Solid electrolyte fuel cells (SOFC), the cleanest  sources of electricity generation, are formed of three main components: solid electrolyte, cathode and anode. The cathode and anode (electrodes) are activation support of electrochemical reactions and transporting charge carriers, electrons and partly or totally ions. With electrolyte forms a triple interface "gas - electronic solid - solid ionic" that changes abruptly the conduction mechanism from electronic (TPB - Triple Phase Boundary) to ionic. The study of processes taking place in the TPB in a solid electrolyte fuel cell is important for optimization of electrochemical reactions. This paper presents the structural and microstructural characteristics of  interfaces cathode / electrolyte / anode in a  fuel cell with solid electrolyte with following ceramic components: solid electrolyte on CeO2 based with addition of calcium oxide and yttrium oxide, cathode of perovskite type based on lanthanum manganite doped (LSM) with strontium and anode a cermet from cerium oxide doped with gadolinium (Ni-CeGd). Mineralogical composition of components used for the fuel cell was performed by X-ray diffraction. Its microstructure was determined by electron microscopy, and the distribution of chemical elements at interfaces cathode / electrolyte and anode / electrolyte was examined by EDX. Cathode and anode surface condition was examined by AFM. The results show a good adhesion of the layers used as electrodes on solid electrolyte support.

 

 


 

Back to Contents