GREEN SYNTHESIS AND CHARACTERIZATION OF SILVER/SILVER OXIDE NANOPARTICLES USING AQUEOUS LEAVES EXTRACT OF ARTEMISIA HERBA-ALBA AS REDUCING AND CAPPING AGENTS

YASSINE BELAICHE 1,3, ABDELHAMD KHELEF 2,3, SALAH EDDINE LAOUI 1,3, ABDERRHAMANE BOUAFIA 1,3 *, MOHAMMED LAID TEDJANI 1,3, AHMED BARHOUM 4,5

1 Department of Process Engineering and Petrochemistry, Faculty of Technology, University of Echahid Hamma Lakhdar El Oued, 39000 El Oued, Algeria
2 Department of Chemistry, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar El Oued, 39000 El Oued, Algeria
3 Lab. VTRS, Faculty of Technology, Univ. El-Oued, El oued 39000, Algeria
4 NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan, Cairo 11795, Egypt
5 School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, Dublin D09 V209, Ireland

Artemisia herba-alba is a medicinal plant, and its essential oil is used as an antiseptic and antispasmodic. In this study, green synthesis of silver/silver oxide (Ag/Ag2O) nanoparticles was successfully synthesized from Artemisia Herba-Alba aqueous leaves extract. The effect of temperature, reaction time, the concentration of AgNO3, the quantity of plant extract, and pH on the synthesis process of Ag/Ag2O was optimized. More interesting, the results showed that only 5 min were required for reducing 1 mM AgNO3 into Ag/Ag2O NPs at room temperature. The crystalline nature of Ag/Ag2O NPs with an average crystallize size of 10.7-36.8 nm. The green synthesizing Ag/Ag2O NPs having in general a spherical morphology with particle/aggregate size less than 100 nm. The maximum UV-Vis absorption peak of Ag/Ag2O NPs was observed at the range of 418-435 nm giving optical band gaps of 2.05-2.30 eV. The TGA/DTA analysis shows significant organic contents (18 wt%) were physically and chemically adsorbed on the dry weight Ag/Ag2O NPs. Artemisia herba-alba is a source of phytochemicals for effective and prompt fabrication of Ag/Ag2O NPs with relevant insecticidal and anti-bactericidal activity against species of high public health importance.

Keywords: silver /silver oxide nanoparticles; Artemisia Herba-Alba; Silver nitrate AgNO3; Green Synthesis, XRD

1. Introduction

Green synthesis has as of late become a typical methodology for the development of nanoparticles (NPs) [1]. Green synthesis (biosynthesis) method utilized for getting nanoparticles through normally happening reagents like vitamins, sugars, plant extracts, biodegradable polymers, and microorganisms as reducing and capping agents [2]. However, the tweaking of the last properties is without a doubt the most repetitive and moving issue to be tackled before the far and wide utilization of metals and metal oxides NPs acquired by these routes [3]. Over the long decades, microorganisms such as bacteria [4–6], viruses [7], algae [8–11], fungi [12–15], yeast [13, 14], and especially plant extracts [16–19] have played a prominent role in the synthesis of metals and metal oxides NPs for specific applications, for example, bioimaging, drug delivery, and tissue engineering [19,20]. Plant extracts are also common in the green synthesis of metals and metal oxides NPs [22], as they act as a bio-reducing agent as well as a covering agent due to the presence of phytochemicals such as organic acids, flavonoids, alkaloids, phenolic compounds, and terpenoids [23–26].

Silver (Ag) and silver oxide (Ag2O) NPs are wonderful materials and have great potential for biomedical applications such as wound healing and cancer treatment [27]. To date, an assortment of synthetic, physical, and biological methods has been developed for the synthesis of Ag and Ag2O with various morphologies for various applications [14],[28]. They are additionally a notable nanomaterial having tremendous applications in the field of oxidation catalysis [29–31], sensors [32–35], cancer cells [36], and photovoltaic cells [37]. There are numerous methods for the synthesis of Ag2O, for example, photoreduction [38], wet precipitation [39–41], electrochemical synthesis [42–45], in additions to the green biosynthesis methods based on microorganisms [46, 47] and plant extracts [48–52]. Nonetheless, the physical and chemical methods are perilous, harmful, and costly [53, 54]. Despite the unique properties and wide range of applications reported for Ag and Ag2O NPs, safety concerns have been raised over the usage of Ag and Ag2O NPs because they pose cytotoxicity effects on the human cells [55].

Plant extract synthesis of Ag/Ag2O NPs in an aqueous medium is advantageous for biological applications because the resulting particles can often be used directly [56], yet these techniques typically provide Ag NPs of low monodispersity, or with a size that is difficult to control [57]. Generally speaking, the aqueous synthesis of Ag NPs falls under the category of wet chemistry. This including
the clustering and nucleation of Ag²⁺ ions within a bulk solution in the presence of a reducing agent. To control particle size, capping and stabilizing agents such as trisodium citrate and polyvinylpyrrolidone (PVP) are typically used to slow and eventually stop the growth of the Ag NPs [58]. The formation of Ag₂O NPs instead of Ag can be performed by combining aqueous solutions of Ag²⁺ ions and alkali hydroxide. This reaction does not afford appreciable amounts of AgOH due to the favorable energetics for the following (2 AgOH → Ag₂O + H₂O, pK = 2.875). Recently, more attention has been given to the low-cost, non-toxic, simple, and eco-friendly synthesis of Ag and Ag₂O NPs from biological sources due to their antioxidant or reducing properties commonly liable for the reducing and stabilizing out of the synthesized nanoparticles.

Plant-extract synthesis seems to be the best route for large-scale Ag and Ag₂O NPs synthesis. Plant parts of Camellia Sinensis (green tea) [59–61], pine [62, 63], persimmon [64], ginkgo [65], magnolia [66], and Platanus [67] are being used for Ag and Ag₂O NPs synthesis. This technique made particles with a scatter size scope of 10 to 200 nm, yet it was likewise tracked down that the Ag NPs size could be constrained by fluctuating the reaction temperature. The speed at which the Ag NPs were reduced by the plant separate was similar to those of utilizing chemicals to reduce [68]. Thus, this route is considered as the best stage being liberated from harmful chemicals just as giving regular reducing and capping agents for the stabilization of the synthesized Ag and Ag₂O NPs. The use plant extract for the synthesis of Ag and Ag₂O NPs is eco-friendly and biocompatibility rout for pharmaceutical and biomedical applications as plant extracts do include toxic chemicals for the synthesis protocol.

The present work disclosed the green synthesis of Ag/Ag₂O NPs by using Artemisia Herba-Alba aqueous leaf extract. The synthesis route of the Ag/Ag₂O NPs was optimized based on the standard characterization techniques, including ultraviolet-visible spectrophotometry (UV–Vis or UV/Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and thermogravimetric and differential thermal analysis (TG–DTA) [69],[70]. This work also provides more information on the chemical composition of the Artemisia Herba-Alba aqueous leaf extract originated from Ain Zatoute –Biskra- (South East of Algeria) and investigates their chemical characteristics. Artemisia Herba-Alba, the white wormwood, is a lasting bush in the sort Artemisia that develops generally on the dry steppes of the Middle East (Desert of Egypt), North Africa (Tunisia, Morocco, and Algeria), Western Asia (Arabian Peninsula), and Southwestern Europe. Numerous reports attributed different natural and/or pharmacological activities of Artemisia Herba-Alba to specific segments of its fundamental oil and found that varieties in oil structure were typically connected with considerable changes in movement, specifically the antimicrobial action [71, 72]. The antibacterial and the antispasmodic activity of Artemisia Herba-Alba fundamental oil has likewise been accounted for to have an enemy of anti-leishmaniasis activity [73].

2. Materials and Methods

2.1. Materials

Silver nitrate (AgNO₃, 98%, VTRS Laboratory), double distilled water, samples of Artemisia Herba-Alba were harvested in October 2018 from Ain Zatoute –Biskra- (South East of Algeria) used as received.

2.2. Preparation of Artemisia Herba-Alba Leaf extract

Leaves of Artemisia Herba-Alba were washed twice by distilled water, then were dried in the air for 5 days, the preparation of aqueous extract been by adding 500 mL of double distilled water to 50 grams of Artemisia Herba-Alba powder (w/v ratio 1:10) and then kept under continuous stirring at 35°C for 24 h. The extract was filtered through Whatman filter paper to obtain the clear filtrate, which was used in Ag/Ag₂O NPs synthesis.

2.3. Biosynthesis of silver/silver oxide nanoparticles

Ag/Ag₂O NPs were synthesized by adding different ratio volume ratios 1 mL to 2.5 mL of leaf extract to 100 mL of 1 mM AgNO₃ aqueous solution in a 250 mL-Erlenmeyer flask. The mixture was kept under stirring 150 rpm at room temperature for 2 hours, the bio-reduction of Ag⁺ to Ag⁰ can be observed by a color change from yellow to reddish-brown after 5 minutes.

2.4. Characterisation of silver/silver oxide nanoparticles

Biosynthesis of Ag/Ag₂O NPs was analyzed by using UV-vis spectrometry (Shimadzu -1800). The UV-Vis measurements were recorded at room temperature in a wavelength region of 300 to 900 nm. The reaction time and stability of the Ag/Ag₂O NPs formation were followed by UV-vis spectrometry using quartz cells and double distilled water as a blank solution. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy measurements of leaf extract and green synthesis Ag/Ag₂O NPs were performed by (Nicolet iS5, Thermo Fisher Scientific), to identify the functional groups carried out in the range of 4000 to 400 cm⁻¹. Crystalline structure and crystallite size of the synthesized Ag/Ag₂O NPs was obtained using an X-ray diffractometer (XRD, Rigaka Miniflex 600) and CuK radiation with a wavelength of 0.15406 nm in the angular 2θ range 10°≤ 2θ<80°. Particle size
Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia Herba – Alba as reducing and capping agents

and morphology of the synthesis Ag/Ag₂O NPs were examined by using (SEM-TESCAN VEGA 3) at an accelerating voltage of 10 KV. Thermogravimetric and differential thermal analysis (TG–DTA) of the silver/silver oxide nanoparticles was studied with a TG apparatus (Netzsch STA 449 F1). Ag/Ag₂O NPs of about 10 mg were heated from 10 to 700 °C at a heating/cooling rate of 10 °C/min and a flow rate of 30 mL/min in the air atmosphere.

3. Results and discussion

Silver NPs were formed by reducing Ag⁺ to Ag⁰ using leaf extract of Artemisia Herba-Alba. However, the reaction parameters such as pH, the ratio of [Ag⁺] to extracted sample, and a time frame can significantly affect the reduction process and lead to the formation of Ag₂O as a co-product. Silver/Silver Oxide NPs were formed by reducing Ag⁺ to Ag⁰ using leaf extract of Artemisia Herba-Alba. However, the reaction parameters such as pH, the ratio of [Ag⁺] to extracted sample, and a time frame can significantly affect the reduction process and lead to the formation of Ag₂O as a co-product. The plant extract-mediated synthesis of Ag NPs hypothesized that the presence of bioactive compounds, such as polyphenols (flavonoids) have a hydroxyl (-OH) and ketonic (-C=O) groups that bind to the bulk metal Ag⁺ ion cluster them to a few nanometres size. The formation of Ag/Ag₂O NPs could be mediated by the presence of OH⁻. This contributes the OH⁻ group to Ag⁺ and results in the formation of highly unstable Ag-OH, which is readily oxidized to Ag₂O upon drying and leads to the formation of the Ag/Ag₂O NPs.

3.1. UV-Vis Spectroscopy

Visual observation shows the color changed from light yellow to brown within 5 minutes, after a while the color becomes dark brown and this indicates might be the excitation of surface plasmon resonance (SPR). The formation of Ag/Ag₂O NPs was confirmed by observing an absorption peak in the visible range from 418 to 435 nm due to SPR at different AgNO₃ concentrations (Figure 1) and different volumes of leaf extract (1.0, 1.5, 2.0, and 2.5 mL) to 100 mL of 1 mM AgNO₃ (Figure 2). The change in the peak intensity is due to the change in the amount of the leaf extract. This may be due to the high number of Ag/Ag₂O NPs formed resulting from the reduction of AgNO₃.

The optimization of the reaction time for Ag/Ag₂O NPs formation was followed at room temperature that in the first 24 hours is shown in Fig. 3, the reaction rate was fast, to start decreasing after that until it becomes very slow after seven days. Which indicated that most Ag⁺ ions were consumed for Ag/Ag₂O NPs synthesis. If we estimate that the formation of Ag/Ag₂O NPs stopped after a week, 89.4% of Ag/Ag₂O NPs formed in 24 hours.

Fig. 1 - UV–Vis absorption spectrum of Ag/Ag₂O NPs synthesized using different 100 mL AgNO₃ precursor concentration with 1.0% leaf extract (v/v).

Fig. 2 - UV–Vis absorption spectrum of Ag/Ag₂O NPs synthesized from 100 mL of 1 mM AgNO₃ with different volume ratio of Artemisia Herba-Alba leaf extract (v/v): 1%, 1.5%, 2%, and 2.5%.

Fig. 3 - UV-vis spectrum absorption of Ag/Ag₂O NPs at different time intervals at room temperature (100 mL of 1 mM AgNO₃ and 1 mL Artemisia Herba-Alba leaf extract).
The estimated optical band gap (Eg) of Ag/Ag₂O NPs is calculated using the Tauc relation Eq. (1) [74]:

\[
(\alpha h\nu) = A(h\nu - E_g)^n
\]

Where \(\alpha\) is the absorption coefficient, \(A\) is constant, \(h\nu\) is the energy of light and \(n\) is a constant depending on the nature of the electron transition, \(E_g\) is optical band gap energy. Additionally, Figure 3 and Figure 4 show the Tauc plot of \((\alpha h\nu)^2\) versus \(h\nu\) at different concentrations and different rapport, respectively. We have obtained the energy gap from the intersection of the edge of the linear part of absorption with the energy axis. When \((\alpha h\nu)^2\) is zero, the photon energy is \(E_g\). The results are listed in Table 1. a (Eg) estimation of Ag/Ag₂O NPs with a different volume ratio of leaf extract was found to be in the range 2.05-2.30 eV. The Bandgap (Eg) slightly decreases from 2.29 to 2.32 eV with increasing the AgNO₃ concentration from 2mM to 5mM with 1.0% of leaf extract.

![Graph showing bandgap (Eg) estimation from Tauc's relation](image)

**Fig. 4 - Bandgap (Eg) estimation from Tauc's relation of the prepared Ag/Ag₂O from 100 mL of 1 mM AgNO₃ with different volume ratio of leaf extract (v/v): 1.0%, 1.5%, 2.0%, and 2.5%.

Table 1

<table>
<thead>
<tr>
<th>Volume ratio</th>
<th>Optical band gap (E_g) (eV)</th>
<th>Precursor concentration</th>
<th>Optical band gap (E_g) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0%</td>
<td>2.30</td>
<td>2mM</td>
<td>2.29</td>
</tr>
<tr>
<td>1.5%</td>
<td>2.27</td>
<td>3 mM</td>
<td>2.32</td>
</tr>
<tr>
<td>2.0%</td>
<td>2.21</td>
<td>4 mM</td>
<td>2.28</td>
</tr>
<tr>
<td>2.5%</td>
<td>2.05</td>
<td>5 mM</td>
<td>2.31</td>
</tr>
</tbody>
</table>

3.2. Fourier transform infrared spectroscopy

FTIR analysis was done to distinguish the nature of the functional groups (reducing and stabilizing biomolecules) in the Artemisia Herba-Alba extract. The resultant FTIR spectrum (Figure 5 and Figure 6) has displayed a few absorption bands that relate to the functional groups of the biomolecules existing in the plant extract. Three main absorption peaks were observed, the broad peak centered at 3340 cm⁻¹ is assigned to O–H stretching vibrations [75, 76], the intense peak at 1650 cm⁻¹ is due to C=O stretching and N–H bending vibrations of the primary amides group which is commonly found in the protein [77]. Besides, the peak located at 650 cm⁻¹ corresponds to C–H bending vibrations out of plane [78].

![FTIR Spectra of Artemisia Herba-Alba extract and the prepared Ag/Ag₂O from 100 mL of 1 mM AgNO₃ with different volume ratio of leaf extract (v/v): 1.0%, 1.5%, 2.0%, and 2.5%](image)

**Fig. 6 - FTIR Spectra of Artemisia Herba-Alba extract and the prepared Ag/Ag₂O from 100 mL of 1 mM AgNO₃ with different volume ratio of leaf extract (v/v): 1.0%, 1.5%, 2.0%, and 2.5%.

The FTIR spectra of AgO NPs synthesized at different precursor concentrations and different (precursor to extract volume ratios) are shown in (Fig. 5) and (Fig. 6) respectively. Comparing the FTIR spectra of AgO NPs with the Artemisia Herba-Alba extract in (Fig. 5) reveals a distinguished decrease in the band’s intensity at 3340 cm⁻¹ and 1650 cm⁻¹ which may indicate that both of the OH group and the proteins presented in Artemisia herba-alba extract have served as bio-reducing and capping agents for AgO NPs synthesis [24].
3.3. X-Ray Diffraction

XRD patterns of the biosynthesized Ag/Ag₂O NPs prepared from 100 mL AgNO₃ solution of different concentrations (2, 3, 4, and 5 mM AgNO₃) and different volume ratios (Leaf extract: AgNO₃ solution of 1:100, 1:200, 1:250, and 1:500) are shown in Fig.7 and Fig.8 respectively. A number of Bragg reflection peaks were observed in all the XRD patterns located at 2θ values of 38.16°, 44.34°, 64.57°, and 77.60° corresponding to (111), (200), (220), and (311) planes of metallic face-centered cubic structure (JCPDS 04-0783) of Ag NPs [79, 80]. Whereas the diffraction peaks at 2θ values of 26.90°, 32.69°, 37.94°, 54.9°, 65.54° and 69° related to (110), (111), (200), (220), (311) and (222) planes of face-centered cubic structure (JCPDS 01-076-1393) of crystalline Ag₂O [81]. Noteworthy that the prepared Ag/Ag₂O NPs with the lowest volume ratio of extract to AgNO₃ solution (1:100) shown in Figure 9 exhibited only one phase of metallic Ag NPs with no additional peaks of Ag₂O phase. The higher contraction of the leaf extracts the higher binding between polyphenols of the extract (hydroxyl, ketonic) to the Ag⁺ ions. This contributes the OH⁻ group to Ag⁺ and results in the formation of highly unstable Ag-OH, which is readily oxidized to Ag₂O upon drying and leads to the formation of the Ag/Ag₂O NPs [82].

The crystallite size of the synthesized nanoparticles was estimated selecting the peak of highest intensity situated at 2θ value of 38.16° using the Scherrer formula Eq (1):

$$ D = \frac{k \lambda}{\beta \cos \theta} \quad (1) $$

Where D is the crystalline size (nm), β is the full width at half maximum of the diffraction peak (FWHM) of the most intense diffraction peak, λ the X-ray wavelength (1.5406 Å) and θ is the Bragg angle of diffraction [83]. The effect of both precursor concentration and volume ratio on crystallite size of Ag/Ag₂O NPs are shown in Table 2.

Table 2 shows that the crystallite size is affected by both precursor concentration and volume ratio. Increasing the precursor concentration has irregularly affected the Ag and Ag₂O NPs crystallite size. On the other hand, increasing the volume ratio of leaf extract to 1 mM AgNO₃ solution from 1:100 to 2.5:100 has decreased the crystallite size of Ag from 20.25 to 10.67 and Ag₂O crystals from 36.79 nm to 12.23 nm.

3.4. Scanning Electron Microscopy

Particle size and morphology of Ag/Ag₂O NPs were studied using the SEM (Figure 10). The particle size of the prepared Ag/Ag₂O NPs have a tight size distribution with an average size of 150-250 nm with a spherical shape. The particle size distribution increases with decreases with increasing the AgNO₃ from 2.5 mM. Most of the
Ag/Ag₂O NPs were aggregated to form foam like a bunch of particles, and however, individual particles were also observed. The spherical shape of Ag/Ag₂O NPs because of the equivalent growth rate alongside all nucleation directions where the sphere has the littlest surface area per unit volume contrasted with different shapes.

![Image](image_url)

Table 2

<table>
<thead>
<tr>
<th>AgNO₃ Concentration</th>
<th>Extract/AgNO₃ solution Volume Ratio (ml/ml)</th>
<th>Crystallite size of Ag (nm)</th>
<th>Crystallite size of Ag₂O (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mM</td>
<td>1.0/100</td>
<td>14.95 ± 1.05</td>
<td>36.79 ± 1.45</td>
</tr>
<tr>
<td>3 mM</td>
<td>1.5/100</td>
<td>10.67 ± 1.38</td>
<td>16.55 ± 0.61</td>
</tr>
<tr>
<td>4 mM</td>
<td>2.0/100</td>
<td>20.25 ± 0.82</td>
<td>12.35 ± 1.12</td>
</tr>
<tr>
<td>5 mM</td>
<td>2.5/100</td>
<td>10.79 ± 1.27</td>
<td>12.23 ± 0.56</td>
</tr>
</tbody>
</table>

Fig. 10 continues on next page
Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia Herba – Alba as reducing and capping agents

Fig. 10 - SEM images of the prepared Ag/Ag$_2$O NPs solution prepared at 100 mL of Ag NO$_3$ of different concentrations ((a,b) 2 mM, (c,d) 3 mM, (e,f) 4 mM, and (g,h) 5 mM AgNO$_3$) and 1 mL of Artemisia Herba-Alba extract.

Fig. 11 - TGA and DTA profiles the prepared Ag/Ag$_2$O NPs solution prepared at 100 mL of AgNO$_3$ of different concentrations 2 mM AgNO$_3$ and 1 mL of Artemisia Herba-Alba extract.

3.5. Thermal Analysis and Organic Contents

Figure 11 shows a thermogravimetric analysis (TGA/DTA) performed to assess the purity of Ag/Ag$_2$O NPs in the powder form. Data extracted from TGA/DTA analysis was used to estimate the organic contents adsorbed on the surface of the Ag/Ag$_2$O NPs and their thermal stability for oxidation in the air in the temperature range from 25 to 700 °C. [84]. To confirm the stability of Ag/Ag$_2$O NPs, thermogravimetric analysis was performed under a nitrogen atmosphere at a heating rate of 10 °C/min. Further weight loss was observed during heating from 300 to 700 °C. The first weight of about 2wt% occurs at about 140 °C due to loss
of physically adsorbed water (moisture). The second weight loss (18 wt%) in the temperature range 350-680 °C is due to the oxidation and degradation of the organic and liberation of CO2 and H2O [85]. Significant weight loss is observed in the heating step at 300-350 °C due to the elimination of the organic part [86].

4. Conclusion

This study describes a green, simple, and eco-friendly method for the synthesis of Ag/Ag2O NPs using Artemisia Herba-Alba aqueous leaf extract as a reducing and capping agent. The formation of Ag/Ag2O NPs and influence of different AgNO3 concentrations and addition of different volumes of leaf extract to AgNO3 solution was studied by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transforms infrared spectroscopy (FTIR), scanning electron spectroscopy (SEM), and X-ray diffraction (XRD) and thermal analysis (TGA/DTA). The formation of Ag/Ag2O NPs was confirmed by observing an absorption peak in the visible range from 418 to 435 nm due to SPR at different AgNO3 concentrations. The results have shown that the crystallite size of Ag/Ag2O NPs can be significantly influenced by the precursor concentration and volume ratio. Increasing the volume ratio of leaf extract to 1 mM AgNO3 solution from 1:100 to 2.5:100 (v/v) has decreased the crystallite size of Ag from 20.25 to 10.67 and Ag2O crystals from 36.79 nm to 12.23 nm. The Ag/Ag2O NPs were found to be less than 100 nm in size with spherical shapes. The TGA/DTA analysis shows significant organic contents (18 wt %) were physically and chemically adsorbed on the dry weight Ag/Ag2O NPs. The purposed procedure is green and viable because it’s simple, fast, low cost, and friendly to the environment compared to other wet chemistry methods.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgment

Dr. Ahmed Barhoum (Head of NanoStruc Research Group, Helwan University) would like to thank the Irish Research Council for financing his research work (2020-2022) at the School of Chemical Sciences, Dublin City University under grant number (Project ID: GOIPD/2020/340).

REFERENCES

reducing and capping agents

Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia Herba – Alba as reducing and capping agents

[27] M. Rehan, A. Barhoum, T. A. Khattab, L. Gätjen and R. Wilken, Colored, photocatalytic, antimicrobial and UV-protected viscose fibers decorated with Ag/AgCl nanoparticles, Cellulose, 2019, 26(9).

Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia Herba – Alba as reducing and capping agents

Yassine Belaiche, Abdelhamid Khelef, Salah Eddine Laouini, Abderrahmane Bouafia, Mohammed Laid Tedjani, Ahmed Barhoum

Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia Herba – Alba as reducing and capping agents

