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This article aims to produce sustainable and durable mortar with help of wollastonite admixing with Pozzolan portland 

cement with and without nano-silica. Wollastonite was chosen for its flexural capacity and nano-silica for refining the pore matrix 
and improving the overall properties of the mortar matrix. At 3, 7, and 28 days, eight different mix proportions were investigated. 
The ease with which water moves through the mortar medium and also porosity parameters were used as durability indicators. 
Mechanical properties tested were compressive strength, flexural strength, and dynamic modulus of elasticity. Correlations of 
mechanical properties were found using a graphical method. X-Ray Diffraction (XRD) and Fourier Transform infra-red (FT-IR) 
spectroscopy were employed to characterize the samples taken from the fractured specimens. Pore radius was calculated with 
the help of sorptivity and permeable porosity values. In terms of mechanical and durability properties, wollastonite replacement 
at 10% and nano-silica replacement at 6% were found to be optimum.  
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1.  Introduction 

 
Greenhouse gas emissions can be reduced 

in the construction industry by reducing cement 
consumption or using carbon capture and 
sequestration (V. Dey et al. 2015; Deng et al. 2013; 
Svensson et al. 2018). Carbon capture and storage 
are not without their own set of constraints. The 
most straightforward option is to reduce the 
consumption of cement. 

Wollastonite is a white-colored natural 
mineral with an acicular structure that can be used 
for partial substitution of cement. The particles of 
this material are fibrous due to their acicular 
structure (Kwon et al. 2015; V. Dey et al. 2015; 
Deng et al. 2013; Soliman and Nehdi 2012). The 
fibrous structure of wollastonite can help the 
cement-wollastonite matrix improve the flexural 
property. The stoichiometric formula for 
wollastonite is CaSiO3. Wollastonite is also 
classified as a Class C pozzolan based on its 
primary composition (Ransinchung and Kumar 
2010; Nair and Sairam 2021). Compressive, and 
flexural strength, water absorption properties, and 
chloride ion penetration of paving concrete (Mathur 
et al. 2007) and cement-silica fume concrete 
(Ransinchung, Kumar, and Kumar 2009) were 
studied. The study on wollastonite-recycled waste 
ceramic aggregates and micro-silica effects on the 
durability of high strength concrete (Zareei et al. 
2019).  The ductility of wollastonite microfibres was 
studied in an ultra-high-performance mortar (Kwon 
et al. 2015).  

Nano-silica’s addition increases the 
mechanical and durability properties of concrete 
and mortars nano-silica is used to spread the 
nanoparticles more evenly and because dry silica 

 (Naji Givi et al. 2010; U. Sharma et al. 2019; Li 
and Ding 2003). Nano-silica has a very high specific 
surface area which facilitates very high reactivity and 
accelerates hydration (Aggarwal, Singh, and 
Aggarwal 2015; Qing et al. 2007). Nano-silica 
increases the pore size distribution and densifies the 
paste, which improves the mechanical and durability 
properties of the paste even at an early stage (Zhang, 
Islam, and Peethamparan 2012; U. Sharma et al. 
2019). Colloidal nano-silica accelerates the formation 
of gel structure and hydration at an early age  (Hou et 
al. 2013).  

Sorptivity is a long-proven measure for 
concrete durability based on water movement 
through unsaturated materials like stone, brick, and 
construction material (Christopher Hall and Hamilton 
2018; C. Hall 1989; Christopher Hall and Hoff, n.d.). 
Many parameters such as pore radius, capillary 
moisture content, and nonlinear hydraulic diffusivity 
can be mathematically derived from sorptivity (Feng 
and Janssen 2018; Christopher Hall and Hoff, n.d.; 
Hanumanthu and Sarkar 2021). Sorptivity depends 
on functions like density, surface tension, pore radius, 
capillary continuity, tortuosity, and surface tension of 
a liquid (Uzoegbo 2019).   

The objective of this study is to find the 
optimum dosages of wollastonite and nano-silica with 
help of mechanical, durability, and microstructural 
studies focusing on porosity of the mortar matrix. 
There is little or no information about sorptivity and 
water absorption studies conducted on mortars 
containing wollastonite and nano-silica. From these 
durability studies porosity can be studied. Colloidal 
Fig. 1 - Wolkem India limited provided the wollastonite 
Kemolit H3 (N). Colloidal nano-silica cembinder 8 was 
provided by Nouryon Company. Sand utilized as per 
ASTM C33. The water/binder ratio was kept at 0.50 
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cannot utilize the entire specific surface area of 
particles, therefore colloidal nano-silica was used. 
Nanosilica also refines the pore structure. The 
nano-silica dosage is limited to 6% from an 
economic point of view. From porosity and 
sorptivity values, the pore radius is calculated 
(Yang et al. 2019). These parameters are 
correlated with mechanical properties such as 
compressive strength, flexural strength, and 
dynamic modulus of elasticity using the graphical 
method.  
 
2.Materials and methods 

 
Pozzolana Portland cement (PPC) 

conforming to type IP according to ASTM C595 
was used.  

for the control mix and other mixes. The mortar was 
mechanically mixed as per ASTM C305. The binder 
to sand ratio was maintained at 1:2.75. Table 1 shows 
the mix designation used in this paper. Fig. 1 shows 
the Field emission scanning electron microscope 
(FESEM) image of wollastonite H3 having a fibrous 
structure. 

 

 
Fig. 1 FESEM image of wollastonite 

Table 1. Mix designation descriptions 

Sl. 
No. 

Mix Designation Cement (% of total 
binder) 

Wollastonite (% of total 
binder) 

Nano-silica (% of total 
binder) 

1 C0 100 - - 

2 H10 90 10 - 

3 H20 80 20 - 

4 H30 70 30 - 

5 NS 1.5 88.5 10 1.5 

6 NS 3 87 10 3 

7 NS 4.5 85.5 10 4.5 

8 NS 6 84 10 6 

 
Wollastonite and nano-silica physical properties are shown in table 2 (a & b). 
 

 
Table 2ª. Wollastonite Physical properties (Kwon et al. 2015; Bian et al. 2016; Mathur et al. 2007) 

Material Density,g/cc Specific gravity Mohr’s hardness Bulk density, 
g/cc 

Wollastonite 2.8 2.9 5 0.6 

Table 2b.  
Nano-silica Physical Properties (Levasil, n.d.) 

Material SiO2 content Density, g/cc pH Viscosity, cP 
Colloidal Nano-silica 50 % by wt 1.4 9.5 8 

 

 
Sorptivity test and density, absorption, and voids test 
has been conducted under ASTM C1585 and ASTM 
C642 respectively under durability parameters. The 
specimen conditioning is done to achieve a moisture 
content of 40-60% to experiment with specimens 
exposed to natural climate (DeSouza, Hooton, and 
Bickley 1997).  
 
2.1 Material Characterization 

The samples were collected from specimens 
after the compression test and sieved in a 90-micron 
sieve. The collected sample was then dipped in 
isopropyl alcohol to arrest hydration 
(Kondraivendhan and Bhattacharjee 2010). 

XRD is one of the most renowned 
characterization techniques currently available for 
fine-grained crystalline materials. XRD was carried 
out by powder X-ray diffractometer-Bruker, D8 advance. 

  
Here, quantitative phase analysis (QPA) of the 
sample is carried out. QPA is the comparison of 
obtained XRD patterns with an already existing 
database of phases (scrivener, Snellings, and 
Lothenbach 2016). 

FESEM is an imaging technique that gives 
the morphology of a given material (scrivener, 
Snellings, and Lothenbach 2016). FESEM analysis 
was conducted in Thermo Fisher FEI-Quanta 250 
FEG having an operating voltage between 5kV-
30kV, and a resolution of 1.2 nm in vacuum 
conditions. 

FT-IR spectroscopy determines the 
functional group of molecules, as such groups have 
fundamental vibrations based on irradiation from 
different wavelengths of light. FTIR was conducted 
by Shimadzu IRAffinity-1 mid IR range equipment 
(4000-400 cm-1) with 0.5-16 cm-1 resolution. 
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2.2 Mechanical properties 

Compressive strength was analyzed as per 
ASTM C109 using 50 mm mortar specimens. A 
flexural strength test was conducted on an 
electromechanical Universal testing machine 
(EUTM). The rate of displacement of the machine 
was fixed at 0.1 mm/sec (Soliman and Nehdi 2012). 
Flexure test was conducted after 7 and 28 days of 
curing. 

An ultrasonic pulse velocity (UPV) test was 
conducted to determine the DYM by IS: 13311-2004. 
Fig. 2 shows the ultrasonic pulse velocity equipment. 

 

 
Fig. 2- Proceq Pundit PL-200 

 
2.3.Durability properties 

Water absorption test was conducted in 
accordance with ASTM C642. Water absorption was 
conducted on 3 specimens for each mix proportion/ 
curing age. Sorptivity was conducted as per ASTM 
C1585, and 2 numbers of cylindrical specimens for 
each mix/curing age was experimented.  
 
3.Results and discussions 

3.1 Compressive strength 

The compressive strength values of all the 
mixes at different curing ages have been presented 
in table 3. Compressive strength decreased with 
decreasing cement content except for 10% 
wollastonite replacement. Amongst the wollastonite-
only mixes, H10 showed better compressive values 
than the control mix, hence it was selected as 
optimum. Nano-silica was added to H10 mixes as 
cement replacements. The lowering of compressive 
strength as wollastonite content increases can be 
attributed to the dilution effect. The strength improvement 
at later stages of curing is due to improvement in  

 matrix-microfibre bond (Soliman and Nehdi 2012) 
and pozzolanic activity of wollastonite (Ransinchung 
and Kumar 2010). The compressive strength 
increases with a dosage of nano-silica compared to 
the control mix. NS6 was 33% and 34% higher and 
H30 was 8.7% and 10% lower compared to the 
control mix at 7 and 28 days, respectively. The 
increase in compressive strength due to partial 
replacement with nano-silica can be attributed to 
void filling in early-stage mortar matrix hydration, 
and as an activator to fasten the pozzolanic reaction 
due to very high specific surface area resulting in 
the formation of additional CSH gel (U. Sharma et 
al. 2019; Levasil, n.d.). 
 
3.2 Flexural strength 

Flexural strength was investigated to 
ascertain the bond strength between wollastonite 
microfibres, nano-silica, and cement matrices. Due 
to the fibrous nature of wollastonite, H30 showed 
the highest flexure strength among wollastonite 
mixes. At 7 and 28 days, H30 achieved 19% and 
10% flexural strength higher than the control mix, 
and NS6 flexural strength was 35% and 14% more 
than the control mix, respectively. The load vs 
displacement graph for the mixes containing 
wollastonite showed failure at very high 
displacements. Wollastonite helped delay the onset 
of the first crack by bridging the micro-cracks 
(Soliman and Nehdi 2012). The mechanism by 
which nano-silica enhanced the flexural strength 
can be attributed to the matrix being densified by 
homogeneously placed nanoparticles(Naji Givi et 
al. 2010; Jo, Kim, and Lim 2007). Table 3 shows the 
variation of flexural strength of different mixes at 7 
and 28 days. 

 
3.3 3.3 Dynamic Young’s Modulus of elasticity (DYM) 

H10 displayed the highest DYM amongst 
wollastonite mixes and 18% higher than to control 
mix. There is an increase in DYM compared to the 
control mix as the wollastonite fibers create a 
bridging effect through micro-cracks (Vikram Dey et 
al. 2016). An increase in wollastonite content 
facilitates increasing the porosity and thereby 
decreasing the DYM (J 2000). When Nano-silica 
was used, the highest DYM was observed in NS 6, 
23% higher than the control mix as represented in 
table 3. The cement matrix was densified with the 
use of nano-silica as it reduced the porosity (Ghosh, 
Sairam, and Bhattacharjee 2013; S. K. Sharma 
2019; Naji Givi et al. 2010). 

 
Table 3. Mechanical properties of mortar 

Mix 
Designatio

n 

Compressive strength, MPa Flexural strength, 
MPa 

Dynamic Youngs 
modulus, GPa 

3 
days 

7 days 28 days 7 days 28 days 28 days 

C0 8.0 21.4 35.7 2.76 4.2 2.55 
H10 10.9 24.9 39.3 2.89 4.4 2.75 
H20 8.80 21.0 34.8 3.10 4.3 2.60 



     Nishant A Nair, Viswanathan T.S. / Effect of wollastonite and colloidal nano-silica on mechanical, and durability properties                  179 

                                                              of cement mortar                                            
 

H30 7.47 19.6 32.1 3.30 4.3 2.50 
NS1.5 10.8 22.8 42.9 3.50 4.5 2.82 
NS3 11.4 24.5 43.6 3.70 4.6 2.85 

NS4.5 16.9 24.9 45.2 3.73 4.6 2.87 
NS6 17.0 28.5 48.0 3.73 4.73 2.93 

 

 
Fig. 3 - Correlation between mechanical properties of mortar 

 
3.4 Correlation between compressive strength 
with flexural strength and dynamic young’s 
modulus 

 
The 28 days logarithmic relation between 

compressive strength and flexural strength with an R2 

value of 0.97 is represented in fig. 3. The relation 
between compressive strength and flexural strength 
is given in logarithmic equation 1. 

𝐲 = 𝟏. 𝟏𝟖𝟏𝟐 𝐥𝐧 𝐱 + 𝟎. 𝟏𝟑𝟔   [1] 
Compressive strength and DYM can be 

correlated by the following equation, 
𝐲 = 𝟏. 𝟏𝟐𝟕𝟒 𝐥𝐧 𝐱 − 𝟏. 𝟒𝟐𝟏𝟐              [2] 
The R2 value of both the above equations 

shows an excellent correlation between compressive 
strength, flexural strength, and DYM. The mechanical 
value data sets are close to the regression line. 

 

3.5 Water absorption test 

Water absorption after immersion (WAI), and 
water absorption after boiling (WAB) are represented 
in fig. 4a and 4b, respectively. In mixes containing 
only wollastonite, the WAI of H10, W20, and W30 was 
found to be 6.9%, 6.8%, and 1.8% lower than the 
control mix, respectively at 28 days. WAB of H10,  

H20, and H30 was found to be -3.9%, -4.9%, 
and 11% respectively compared to the control mix at 
28 days. While considering the nano-silica mixes, the 
water absorption is further reduced due to pore 
refinement. NS1.5, NS3, NS4.5, and NS6 have WAI 
of 9.92%, 21.3%, 21.4%, and 21.9%, respectively 
lower than the control mix at 28 days. WAB of NS1.5,  

 
 

NS3, NS4.5, and NS6 at 28 days lower than the 
control mix are 1.74%, 4.41%, 6.71%, and 20.6%, 
respectively. Bulk and apparent density are 
represented in fig. 4c and 4d respectively. The trend 
shows an increase in both densities with the 
addition of nano-silica. NS6 has the highest bulk 
density which is 11.2% and an apparent density of 
10% more than the control mix at 28 days. The 
highest bulk and apparent density among 
wollastonite only mix at 28 days was found in H10, 
i.e. 2.93% and 0.52% higher than the control mix, 
respectively. 

Permeable voids of all mixes are given in fig. 
4e. At 28 days, NS6 has the lowest pore space of 
11.73% less than the control mix and H10 has the 
lowest pore space among wollastonite-only mixes 
of 1.56% to the control mix. At 3 and 7 days, a 
similar trend was noticed, NS6 was lowest with 
16.32% and 15.35%; H10 had 0.94% and 1.77%, 
respectively compared to the control mix.  

The absorption, density, and porosity are 
correlated.  These parameters can also be 
correlated to compressive strength and DYM. NS6 
shows the highest compressive strength, bulk 
density, apparent density, and DYM among all 
mixes and also has low permeable pre-space and 
water absorption. The mechanisms responsible for 
these changes are (a) pore size refinement and 
densification of matrix, (b) reduction of calcium 
hydroxide, and (c) improvement in interfacial zones 
of binder-aggregate (Rao 2003; Ransinchung and 
Kumar 2010).  
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Fig. 4 - a) Absorption after immersion; b) Absorption after boiling; c) Bulk Density; d) Apparent Density; and e) Volume of 

permeable voids 
 

3.6 Sorptivity 

From fig. 7, we can observe that the initial rate 
reduces drastically as the amount of nano-silica is 
increased and also, there was an increase in the 
initial sorptivity rate as the amount of wollastonite 
increased. The sorptivity represents the porosity 
present in the mortar mixes. The least initial sorptivity 
was observed in NS6 at 3, 7, and 28 days at 68.8%, 
69.9%, and 69.7% lower than the control, mix, 
respectively. Among the wollastonite-only mixes, H10 
shows high initial sorptivity in 3 days but it reduces at 
7, and 28 days about 26.53% and 18.33% lower than 
the control mix, respectively. 

 

 The secondary sorptivity and trend lines are 
shown in Fig. 8 for various mix designations.  

In comparison to the control mix, NS6 had th
e lowest secondary sorptivity at 3, and 28 days, wit
h 3.3%,57.1 %, and 93.56%, respectively. 

The density of the matrix and the interconne
ctivity of the voids are represented by the initial an
d secondary sorptivity. The fig. 7 and 8 suggest that 
the increase in wollastonite content of more than 
10% increases the porosity of the matrix, and nano-
silica reduces the water ingress to the matrix by 
filling the pores by forming CSH nanocrystals 
(Monteiro et al. 2009) and discontinuing the pore 
network. 
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Fig. 7- Initial sorptivity 

 

 
Fig. 8. Secondary Sorptivity 

 
3.7 Pore radius 

Permeable pore radius can be calculated 
theoretically using Hagen-Poiseuille equating and the 
Lucas-Washburn model (Yang et al. 2019). Hagen-
Poiseuille equation is given as, 

𝒅𝑽

𝒅𝒕
=

𝝅𝑹𝟒𝜹𝑷

𝟖𝜸𝑯
                  [3] 

Where, dV/dt-Volumetric rate change, R- 
radius of conduit, ΔP- change in pressure, γ-dynamic 
viscosity of the fluid, H- depth of ingress. 

Finally, the relationship between sorptivity, 
porosity, and pore radius is as follows: 

 

 𝑹 =
𝟏

𝒌
ቀ

𝑰

𝝋
ቁ

𝟐

                                 [4] 

Where, R-permeable pore radius, k-constant 
= (γcosϴ/2η), γ-surface tension of the liquid. ϴ- 
contact angle of liquid, η- dynamic viscosity of the 
liquid, φ- porosity, I-sorptivity 

The pore radius is given in table 4, we can 
observe that with an increase in nano-silica 
percentage the pore radius can be seen reducing 
suggesting densification of matrix and discontinuity 
in porosity. The discontinuity of pores can be 
attributed to wollastonite bridging the micro-cracks 
and the formation of CSH gel and nano-silica acting 
as fillers of pores.  

 
 

Table 4 
Theoretical Permeable Pore radius  

Mix designation 
Pore radius (m) 

3 days 7 days 28 days 

C0 1.21234E-05 5.40724E-06 1.06446E-06 

H10 1.6088E-05 6.44892E-06 2.10621E-06 

H20 1.12467E-05 1.13522E-05 2.19679E-06 

H30 1.23475E-05 1.06895E-05 2.68091E-06 

NS1.5 6.78277E-06 3.81467E-06 2.55961E-06 

NS3 4.23326E-06 2.91724E-06 9.04552E-07 

NS4.5 5.13711E-06 2.9532E-06 5.15979E-07 

NS6 1.68241E-06 1.44916E-06 3.70887E-07 
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3.8 XRD 
The peaks of various blends acquired by 

XRD are shown in Figure 9. The components of the 
mix are represented by these peaks and are analyzed 
by the Rietveld method. The creation of Calcium-
Silicate-Hydrate (CSH) gel, alite (C3S), and belite 
(C2S) bogue compounds, which are crucial in the 
hydration process, can be seen in the XRD data. As 
the nano-silica with wollastonite percentage is increased, 

 the peaks of Calcium hydroxide reduce significantly 
as the Calcium hydroxide is converted to CSH by 
nano-silica (Levasil, n.d.). The strong peaks of 
unhydrated compounds like alite and belite are 
maintained. Even the CSH gel formation shows 
stronger peaks with the addition of wollastonite and 
nano-silica. With the inclusion of wollastonite and 
nano-silica, the Calcium-Silicate-Hydrate gel formation 
also shows stronger peaks. Ettringite can be seen 
in peaks near 10-12 degrees. 

 

 
Fig. 9. X-Ray Diffraction data 

 

3.9 FT-IR spectroscopy 
 

Different functional groups and phases were 
found after 28 days of curing in various mixes by FT-
IR spectroscopy. Large vibrations near 1400 cm-1 
were observed in all mixes except the control mix. 
This indicates the presence of monocarboaluminate 
of calcium (C3A) which forms due to a reaction 
between CO2 and excess calcium aluminium hydrate. 
Low vibrations near 3200-3400 cm-1 indicate the 
presence of hexagonal hydrates i.e. CSH gel. 420-
440 cm-1 vibrations are associated with ettringite due 
to wollastonite, a natural pozzolan. The formation of 
monocarboaluminates hinders the conversion of 
ettringite to monosulphates due to the consumption 
of CO2 (Scrivener and Capmas 2004; Trezza and 
Lavat 2001). 

 4.Conclusion 
 
Admixing nano-silica with 10% wollastonite 

had a very positive impact on the 7 and 28-day 
compressive strength of mortar. The addition of 
wollastonite and nano-silica delayed the onset of 
the first crack by fusion of microcracks. DYM 
decreased with an increase in wollastonite microfibres 
due to an increase in porosity. DYM of nano-silica 
mixes increased due to the densification of the 
matrix. Water absorption and permeable pores 
gave corresponding values, proving that DYM 
reduction is due to porosity. The pore radius of 
nano-silica admixed mixes show lower values than 
the control  mix. The increase in compressive and 
flexural strength can be attributed to the dense 
matrix due to the conversion of calcium hydroxide 
to CSH nanocrystals which also reduces the pore 
radius. The XRD data shows a significant reduction 
in calcium hydroxide when nano-silica is used. FTIR 
corroborates with XRD on the formation of CSH gel. 
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