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Both endogenous and exogenous factors influence 

mechanical strength of oxide glasses. Thus, this property 
depends on the chemical-structural particularities of the 
vitreous system, and, also, on the measurement procedures. 
Due to the influence of random factors, in practice, 
mechanical strength has distributed values. For its 
evaluation, different statistical laws can be used. 

In the paper, for a flat glass, four types of statistics 
are tested: the normal law (Gauss-Laplace), the Gamma law, 
the log-normal law and the Weibull law. Based on the 
experimental data, a series of statistical indices are 
calculated, and it is decided which statistical law better 
model data distribution. 

 

 

  
Rezistența mecanică a sticlelor oxidice este 

determinată atât de factori endogeni, cât și de factori 
exogeni. Astfel, această proprietate are valori în funcție de 
particularitățile chimico-structurale ale sistemului vitros, dar 
și în funcție de condițiile de măsurare. Datorită acțiunii unor 
factori cu caracter aleatoriu, rezistența mecanică practică 
prezintă valori distribuite. Pentru evaluarea acesteia, se pot 
utiliza diferite legi statistice. 

În lucrare, pentru o sticlă de geam, sunt testate patru 
tipuri de statistici: legea normală (Gauss-Laplace), legea 
Gamma, legea log-normală și legea Weibull. Pe baza datelor 
experimentale se calculeaza o serie de indicatori statistici și 
se decide care lege statistică modelează mai bine tipul de 
repartiție a acestora. 
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1. Introduction 

 
The potential field of use of any material is 

determined by its main characteristic properties. At 
the same time, the performance of the material is 
determined by the value of the leading property 
(properties). Accurate evaluation of the properties 
requires i) a high precision measurement method 
and ii) adequate statistical processing of 
experimental data. Among the properties of oxide 
glasses, mechanical strength has long been studied 
[1-5]. The attention was motivated by at least two 
aspects:  

- mechanical strength is an important property 
of vitreous materials, in real life;  

- in different structural hypotheses, the 
theoretical mechanical strength of oxide glass was 
placed in the range of 7-30GPa; measured values 
usually ranged within 0.05-0.7GPa. That 
discrepancy was explained, over time, by the 
influence of intrinsic and extrinsic factors. The main 
cause that determines such a drastic decrease in the 
values of mechanical strength is the presence, 
postulated by Griffith [1], of some superficial 
microcracks of nano (sub-nano) metric size. Their 
appearance is important due to the chemical and 
dimensional heterogeneity of the component 
structural entities, at various levels. Therefore,  

 although at the macroscopic level, glass is a 
homogeneous and isotropic material, at various 
structural levels the local values of the properties are 
different. Local tensions can generate superficial 
microcracks, acting like levers that amplify an 
applied force. Thus, the catastrophic failure of the 
glass occurs when applying much smaller external 
forces than those theoretically expected. There are 
four groups of factors influencing the practical value 
of mechanical strength: structural features, genesis 
route and processing parameters, measurement 
method and associated influencing factors, 
statistical method used in processing the 
experimental data. Image analysis (by Atomic Force 
Microscopy) of cracks intersecting the free surface 
of a glass specimen allows to measure stress 
intensity factors in a quantitative way [6]. 

In this paper a comparative statistical analysis 
of the mechanical strength behavior of 50 glass 
samples was performed; experimental data were 
processed with various statistical models.  
 
2. Statistical distributions. Statistical indices 
 

The formation and distribution of structural 
defects in glass, respectively of the microcracks that 
will generate the rupture, have a probabilistic 
pattern. For this reason, brittle fracture is a random  
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process that generates distributed values for 
mechanical strength, R, determined on a set of 
apparently identical samples. This reality requires a 
statistical evaluation for R. 

The statistical variable, X, is associated to the 
experimental glass mechanical strength, R. The 
measured values show a certain distribution 
described by the function 𝑓𝑋(𝑥, 𝜃) > 0 , which 
represents a probability density, defined on a 
domain 𝐷 𝑅. The explicit definition is written as: 

𝑃𝑟𝑜𝑏{𝑋 ∈ 𝐷} = ∫ 𝑓𝑋(𝑥, 𝜃)𝑑𝑥 = 1
𝐷

          (2.1) 

with 𝜃 being a parameter that gives specificity to 
the considered distribution [2]. 
The probability that the X variable is smaller than a 
given value x is represented by a function  

𝐹𝑋
′ (𝑥) = 𝑓(𝑥, 𝜃)                       (2.2) 

Using the distribution function, one can calculate 
the probability that: 

𝑎 ≤ 𝑋 ≤ 𝑏; 𝑃𝑟𝑜𝑏{𝑎 ≤ 𝑋 ≤ 𝑏} = 
= 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎)                                   (2.3) 
𝑎 ≤ 𝑋; 𝑃𝑟𝑜𝑏{𝑎 ≤ 𝑋} = 𝐹𝑋(𝑎) = 

= ∫ 𝑓𝑋(𝑥, 𝜃)𝑑𝑥
𝐷

                                   (2.4)                                     

𝑏 ≥ 𝑋; 𝑃𝑟𝑜𝑏{𝑏 ≥ 𝑋} = 1 − 𝐹𝑋(𝑏)         (2.5) 

where [𝑎, 𝑏] 𝐷. 

Essentially, the equations (2.3) - (2.5) give 
the means to compute the probability that the 
mechanical resistance R will be placed inside or 
outside some prescribed value ranges. 

Other features of the distributions for 
continuous variables refer to their degree of 
dispersion and symmetry. Such indices are 
represented by moments. Thus, a second order 
centered theoretical moment, D2 is defined by the 
Eq: 

 𝐷2 = 𝑀[𝑋 − 𝑀(𝑋)]2 = ∫ 𝑥2𝑓𝑋(𝑥)𝑑𝑥
𝐷

−

− (∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
𝐷

)
2

                                  (2.6) 

 
3. Experimental 
 
3.1. Data processing 

The object of the research was a set of 50 
samples of indigenous glass. Rectangular shaped 
samples had their dimensions: length (L) x width (l) 
x thickness (d) = 0.25 m x 0.038 m x 0.005 m. 

The mechanical tensile strength was tested 
by the 4-point method [1, 5]. The mechanical 
strength of the samples, R, was calculated with the 
equation: 

 𝑅 =
0.30∙𝐹∙𝑎

𝑙∙𝑑2   [𝑀𝑃𝑎]   (3.1) 

where F denotes failure stress, in N, a – 
distance between loading points, in m. 

The experimental values obtained are 
presented as an ordered array in Table 1. By 
processing these data, the statistical values 
resulted: average = 62.3 MPa (paper [5] give the 
average of 61.7 MPa), standard deviation = 16.7 
MPa, median = 55.6 MPa. 
 
3.2. Calculation of the number of intervals 

(classes) 
3.2.1. Elimination of outliers 

In the first stage of evaluating the 
mechanical resistance, it should be tested that the 
experimental values do not contain aberrant, 
erroneous values, called outliers. These outliers 
occur for various reasons and must be removed in 
order not to affect the results. Various statistical 
tests can be applied to eliminate outliers [6-8]; 
graphical techniques such as, for example, box 
plots and normal probability plots could, also, help 
to identify potential outliers. Of these, Grubbs's test 
is easy to operate with, and it provides numerical 
results that can be compared with a known 
threshold (a critical value), thus providing a 
scientific basis on the decision keep/eliminate the 
point. The test consists of the following steps:  

- ordering experimental data in a limited 
ascending range of xmin up to xmax; 

- statistical indices such as the experimental 
arithmetic mean, mexp, the experimental standard 

deviation, exp, will be obtained; afterwards, for each 
value xi of the array computations will be made 
according to (3.2): 

𝑣 = {

𝑚𝑒𝑥𝑝−𝑥𝑖

𝑒𝑥𝑝
, 𝑖𝑓 𝑥𝑚𝑖𝑛 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡𝑒𝑠𝑡𝑒𝑑

𝑥𝑖−𝑚𝑒𝑥𝑝

𝑒𝑥𝑝
, 𝑖𝑓 𝑥𝑚𝑎𝑥 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑡𝑒𝑠𝑡𝑒𝑑

 

                                                         (3.2) 
- depending on the volume of the database n and 
on the risk assumed to make an erroneous 

decision , the following comparison shul be made: 

𝑣 =

{
> 

𝑛;1−𝜖
, 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑

< 
𝑛;1−𝜖

,   𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑

                                            (3.2.1.) 

Critical values 
𝑛;1−𝜖

 are given in [8]. 

 

Table 1 
Values of the experimental mechanical strength, R [MPa] / Valori experimentale ale rezistenței mecanice, R [MPa] 

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Rj 
[GPa] 

39.8 41.0 44.3 45.0 45.0 47.0 47.1 47.4 47.5 48.0 49.4 49.6 49.7 50.1 50.6 50.6 51.1 

j 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Rj 
[GPa] 

52.1 52.3 52.5 53.1 53.6 53.9 54.5 55.6 55.8 57.2 59.4 63.2 63.2 63.5 64.0 64.8 64.8 

j 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 - 

Rj 
[GPa] 

65.0 67.6 69.0 73.5 75.2 75.3 75.7 77.4 79.3 88.8 88.9 89.0 93.9 95.7 104.5 107.5 - 
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With the mean value and standard deviation 
calculated based on the primary data presented in 
the Table 1, leads to: 

𝑣(𝑓𝑜𝑟 𝑥min) =
62.3 − 39.8

167
= 1.35 < 2.97 

𝑣(𝑓𝑜𝑟 𝑥max) =
107.5 − 62.3

167
= 2.70 < 2.97 

Note that 2.97 represents the critical value 

for 
𝑛;1−𝜖

 when n = 50 and 𝜖 = 0.05. Under these 

conditions, no value is excluded from the series of 
experimental values as being an outlier. 

 
 

3.2.2. Selecting the number of bins (classes) 
Various formulas are available for 

determining the number of classes, k; some of them 
depend on the number of observations, n, other 
being independent on it. For moderate values of n 
(< 50) such as is the given case, Sturges formula is 
widely used [7,8]: 

𝑁 ≅ 1 + 3.33 ∙ 𝑙𝑔𝑛 = 6.66 ≅ 7        (3.3) 

A simple alternative relationship is written: 

𝑁 = [
𝑛

5
] = 10                                   (3.4) 

where [𝑁]  means the whole part of the 
number. 

The literature also presents other formulas, 
including ones suitable to larger populations (n > 
100), having a higher degree of complexity. 

As a guide, considering the number of 
samples used in mechanical strength tests for 
various types of glass samples, it can be selected N 

= 57 for n < 50 and N = 610 for 50 < n < 100 [9]. 
Consequently, for a range with equally sized 

intervals, the size x of the class interval is 
calculated with the simple relation:  

x =
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑁
                      (3.5) 

 
 
3.3. Types of statistical distributions  

In [7,8] it can be found 40 statistical laws, of 
which continuous distributions are almost 30. From 
the most frequently used types of statistical 
distributions for processing data of materials’ 
strength (including glass) reported in the literature, 
four such statistical laws (L) were chosen for 
analysis: normal (N), log-normal (Ln), Weibull (W), 
Gamma (G). These are characterized by 1-3 
parameters and present a series of connections 
between them or with other statistical laws. Because 
in the case of tri-parametric statistics the 
computation of the values of these parameters 
cannot be done by analytical means, and the 
numerical methods are laborious, in the paper the 
two-parameter forms of the Weibull and Gamma 
laws will be tested. 
 
 

 4. Testing statistical hypotheses 
4.1. The normal law of distribution  

Based on the experimental data presented 
in Table 1, Table 2 is constituted from: class i index 
(range) - col. 1; class range limits for mechanical 
strength, R, xi + 1 - xi, col. 2; the value of the class 
center, equivalent to the average values of the 
samples in the interval i, xci, - col 3; the number of 
samples in the interval i, col 4; frequency in 
differential form for ni, fiD = ni/n = ni/50 in column 5; 
frequency in integral form for ni, fiI, in column 6. 

With the data presented in Table 1, the 
histogram from fig. 1a, respectively the integral 
distribution of the variable x (mechanical strength), 
fig. 1b, were obtained. The corresponding data are 
presented in Table 2. 

Table 2 
 

Data for constructing the distribution given in Fig. 1 and 2  
Datele necesare construirii distribuțiilor din Fig. 1 și 2 

i xi xci ni fi
D fi

I 

(1) (2) (3) (4) (5) (6) 

1 30-40 35 1 0.02 0.02 

2 40-50 45 12 0.24 0.26 

3 50-60 55 15 0.3 0.56 

4 60-70 65 9 0.18 0.74 

5 70-80 75 6 0.12 0.86 

6 80-90 85 3 0.06 0.92 

7 90-100 95 2 0.04 0.96 

8 100-110 105 2 0.04 1.00 

 

 
Fig. 1 - R differential distribution / Distribuția diferențială a lui R. 

 
Fig. 2 - Integral distribution of R / Distribuţia integrală a lui R. 
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The following statistical indices resulted for 

this distribution: average = 61.8 MPa,  = 16.42 
MPa. It should be noted that, without being identical, 
the values of the calculated statistical indices are 
close to those determined using the primary data 
given in Table 1. Hence the influence of the 
presentation of primary data on statistical indices. 

The histogram of the relative and absolute 
frequency (cumulated) can predict a certain type of 
statistical distribution law, but, even in this case, the 
confirmation of the concordance between the 
experimental and the theoretical distribution is made 

by applying different analytical tests, such as the  2 
test, Kolomogorov test, Massey or Sarkady tests [8]. 
Because most tests require a relatively large volume 
of calculations, and some of them have additional 

restrictions (e.g. the test 2 requires that each class 
will contain at least 5 values, the confirmation of the 
normality of a distribution can be done using the test 
of the r-order centered moments, Dr, defined by the 
equation: 

𝐷𝑟 = ∑
𝑛𝑖∙(𝑥𝑐𝑖

−𝜎𝑒𝑥𝑝)
𝑟

𝑛

𝑛
𝑖=1           (4.1) 

In order to fit a normal distribution, these conditions 

should be met: D30 and D434. In our case, 

D3=4102 ≫ 0 and D4 = 239032 ≫ 3280, therefore 
the hypothesis of a normal statistical distribution of 
the experimental data is rejected.  
 
4.2. Processing experimental data with the 

Gamma Law 
In 1962, E.W. Stacy presented a statistical 

model called generalized gamma () [8]. It has a 
density described by the equation: 

𝑓(𝑥𝑖, 𝜃, 𝑘, ) =


𝜃∙(𝑘)
∙ (

𝑥

𝜃
)

𝑘∙−1

∙ 𝑒𝑥𝑝 [− (
𝑥

𝜃
)



]

                                                (4.2) 

where x  0,  𝜃, 𝑘,  > 0, (𝑘) = 

= ∫ x𝑘−1∞

0
∙ e−𝑥𝑑𝑥. 

From the tri-parameter Gamma law, a series 
of other types of distributions of a high generality 
can be derived. Obtaining the coefficients in Eq. 
(4.2) requires a laborious numerical calculation; for 
this reason, the paper discusses the case of a 
gamma law with two parameters. Considering the 
relationship (4.2) with  =1 and 1/𝜃  = a, leads to 
density: 

𝑓(𝑥𝑖, 𝑎, 𝑘) =
1

(𝑎,𝑘)
∙ e−𝑎𝑥 ∙ x𝑘−1        (4.3) 

where (𝑎, 𝑘) = ∫ x𝑘−1∞

0
∙ e−𝑎𝑥𝑑𝑥 =

(𝑘)

a𝑘
 

In this case, if a random variable X follows a 

 distribution, then [7, 8]:  

𝑀(𝑋) =
𝑘

𝑎
, 𝐵(𝑋) =

𝑘

𝑎2, 𝐶𝑉(𝑋) =
1

√𝑘
, √ = 

=
2

√𝑘
, 

𝑟
=

6

𝑘𝑟
      
                                                                       (4.4) 
 

 
Because 𝐶𝑉(𝑋) =

1

√𝑘
=

𝜎

𝑥̅
,  = 16.4 MPa, 

it will result k = 14.20. Also, a = k/M(X) = k/𝑥̅ = 0.23. 
From equation (4.4) it results that 

2𝐶𝑉(𝑋) = √
1
; this equality can be used as an 

empirical criterion to validate . In this case,√
1

=
𝐷3

𝜎3
=

4102

4411
= 0.93 and CV = 0.265, so 2CV√

1
, 

situation in which the hypothesis that the 
experimental data of mechanical resistance follow 

a  law can be rejected. 
 

4.3. Processing of experimental data with the 
log-normal law  

The log-normal law is an asymmetric 
distribution, being a function of two parameters: 
logarithmic arithmetic mean, mLn, and logarithmic 

standard deviation, Ln. Distribution density fLn(x) of 
the x variable is given by the equation [7]:  

𝑓𝐿𝑛(𝑥) =
1

𝑥∙𝜎𝐿𝑛∙√2𝜋
∙ 𝑒

−
1

2
(

𝑙𝑛𝑥−𝑚𝐿𝑛
𝜎𝐿𝑛

)
2

       

(5.1) 

with: 𝑚𝐿𝑛 = ∑ 𝑓𝑖
𝐷 ∙ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1            (5.2) 

𝐿𝑛 = √∑ 𝑓𝑖
𝐷 ∙ (𝑙𝑛𝑥𝑖 − 𝑚𝐿𝑛)2𝑛

𝑖=1           (5.3) 

Setting the parameters for the Ln distribution 
make use of the statistical indices obtained from the 

database: average mN, standard deviation, N, and 
variance VN. The equations are [7,8]: 

𝑚𝐿𝑛 = 𝑙𝑛
𝑚𝑁

√1+𝑉𝑁
2

≈ 𝑙𝑛𝑚𝑁 = 4.13          (5.4) 

𝐿𝑛 = √𝑙𝑛(1 + 𝑉𝑁
2) ≈ 𝑉𝑁 = 0.27          (5.5) 

𝑀𝑜𝐿𝑛 = 𝑒𝑥𝑝(𝑚𝐿𝑛 − 𝜎𝐿𝑛
2 ) = 57.8               (5.6) 

𝑀𝑒𝐿𝑛 = 𝑒𝑥𝑝(𝑚𝐿𝑛) = 63.2           (5.7) 

Skewness and kurtosis were computed by 
Eqs. (5.8) and (5.9). Skewness less than 1 indicates 
that it exists a moderate positive skew (data 
distribution stretches toward the right tail of the 
distribution) while kurtosis show a leptokurtic 
distribution (a positive kurtosis, meaning a higher 
frequency of data in the central area as compared 
to the normal distribution). 

(√
1

)
𝐿𝑛

= 3𝑉𝑁 + 𝑉𝑁
3 ≅ 0.83        (5.8) 

(
2

)
𝐿𝑛

> 3                             (5.9) 

Because the probability distribution of the 
Ln law is asymmetrical, one can conclude that 
median 𝑀𝑒𝐿𝑛  is a better statistical index than the 

average 𝑚𝐿𝑛. 
By making the change of variables 𝑦𝑖 =

𝑙𝑛𝑥𝑖−𝑚𝐿𝑛

𝐿𝑛
, the function F(x) and the distribution 

density 𝑓(𝑥) =
𝑑𝐹(𝑥)

𝑑𝑥
,  it result the functions 

corresponding to the normal distribution of the Y 
variable: 
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𝑓𝑌(𝑦) =
1

√2𝜋
∙ 𝑒−

𝑦2

2                    (5.10) 

𝐹𝑌(𝑦) =
1

√2𝜋
∙ ∫ 𝑒−

𝑦2

2 𝑑𝑦
𝑦

−∞
      (5.11) 

The values of these functions are known 
and given in [8]. 

N.B. 𝐹𝑌(−𝑦) = 𝐹𝑌(𝑦) and 𝐹𝑋(𝑥𝑖) ≡ 𝐹𝑌(𝑦𝑖). 

The ordinates of the Ln density distribution 

of the x variable, 𝑓𝑋(𝑥), can be obtained by the 

equation: 

𝑓𝑋(𝑥) =
𝑓𝑌(𝑦)∙∆

𝑥∙𝐿𝑛
                  (5.12) 

where ∆ is the class interval (∆ = 10), that 

should be included to ensure compatibility between 

𝑓𝑖
𝐷

 values from the reference histogram and the 

computed 𝑓𝑖
𝐷

 values resulting from the density 

distribution.  
 

 
Fig. 3 - Mechanical strength differential distribution according to 

the log-normal law / Graficul densității de distribuție a 
rezistentei mecanice conform legii log-normale. 

 

 
Fig. 4 - Mechanical strength integral distribution according to the 

log-normal law / Distribuția integrala a datelor de 
rezistenta mecanica prelucrate cu Ln law. 

 

Fig. 3 shows the differential distribution 
while Fig. 4 gives the integral distribution of 
mechanical strength data, processed with Ln law. 

All results show that it exists a moderate 
departure from the normal distribution; no result, 
however, supports the hypothesis that the log-
normal law fits best the given distribution. 
Specifically, there are differences between Fig. 1 
and Fig. 3 as concerning the frequency amplitude 
corresponding to various mechanical strengths. 
 
 

 4.4. Processing of experimental data with the 
Weibull Law 

In 1951, W. Weibull proposed a distribution 
law as a generalization of the exponential law, 
which applies to the phenomena of fail (destruction) 
due to complex causes in sustainability tests. After 
the sixth decade of the last century, Weibull 
distribution is increasingly used in reliability 
engineering, but also for evaluating the strength of 
materials. [8, 9]. 

Weibull distribution is a statistical law of a 
wide applicability, characterized by 2 to 5 
parameters [8,9]. This gives it a high degree of 
flexibility. The most used in applications are W with 
2 or 3 parameters.  

W distribution function with 3 parameters, 
F(X), is:  

𝐹(𝑥) = 1 − 𝑒−(
𝑥−𝑑

𝜃
)

𝑘

                     (6.1) 

and the density of the distribution f(x) is calculated 
with the equation: 

𝑓(𝑥) =
𝑘

𝜃
∙ (

𝑥−𝑑

𝜃
)

𝑘−1

∙ 𝑒−(
𝑥−𝑑

𝜃
)

𝑘

       (6.2) 

k is a shape parameter giving the 
distribution shape, 𝜃 – scale parameter, d – position 

parameter, x  d > 0, 𝜃 > 0, k > 0. 
For k < 1 and d = 0, W distribution is 

descending; slope is higher when their values are 
lower. If k = 1, W law becomes a two-parameter 
exponential law. For k > 1, the distribution curve is 
bell shaped, being larger the larger k is. For k = 
3.25, W law becomes Gauss law; If k = 2, W law 
represents Rayleigh distribution; for d = 0, W law 
with 3 parameters is transformed into an W with 2 
parameters. 

Average M(X) and variance D2(X) for a W 
law with three parameters can be calculated with 
the equations: 

𝑀(𝑋) = 𝑑 + 𝜃 ∙  (1 +
1

𝑘
)           (6.3) 

𝐷2(𝑋) = 𝜃2 ∙ [ (1 +
2

𝑘
) − 2 (1 +

1

𝑘
)]    (6.4) 

From equations (6.3) and (6.4) the variance 
coefficient, V(X), cand be obtained. If d = 0, the 
three parameters W becomes a two-parameter law. 
In this case, the mode Mo and median Me can be 
calculated with the equations: 

𝑀𝑜 = 𝜃 ∙ (
1

𝑘
)

1

𝑘
                                   (6.5) 

𝑀𝑒 = 𝜃 ∙ (𝑙𝑛2)
1

𝑘                      (6.6) 

The estimation of the parameters in the 
case of the W distribution can be done graphically 
(using the W diagram) or by calculation. In the case 
of the 3-parameter W distribution, the analytical 
calculation is completed with the numerical one [8, 
10]. In the case of the distribution with 4 and 5 
parameters, the calculation of the parameters 
becomes particularly tedious. A method of 
estimating parameters k and 𝜃 of the 2-parameter  
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W law is based on knowledge of the mean, 𝑥̅,  and 
of the dispersion, s2. Thus, the parameter k is 
calculated from the double equation of the 
coefficient V(X) [8]: 

𝑉(𝑋) =
𝑠

𝑥̅
= [

(1+
2

𝑘
)

2(1+
1

𝑘
)

− 1]

1

2

           (6.7) 

From Eq. (6.7) the k value can be obtained. 
𝜃 value can be estimated from Eq: 

𝜃 =
𝑥̅

(1+
1

𝑘
)
                                    (6.8) 

If the shape parameter, k, is known, 𝜃 can be 
calculated by the Eq: 

𝜃 =
1

𝑛
∑ 𝑥𝑖

𝑘𝑛
𝑖=1                                     (6.9) 

A simple and accessible method to obtain 
the WL parameters is by using the mathematical 
regression method. 

An unimodal strength distribution (6.10):  

1 − 𝐹 = 𝑒−(
𝑅

𝜃
)

𝑘

                     (6.11) 

where 𝐹 =
𝑖

𝑛+1
, 𝑖 ∈ [1,8], 𝑖 ∈ 𝑁, 𝑛 = 8 

was fitted to a 2-parameter W distribution: 

𝑙𝑛 𝑙𝑛
1

1−𝐹
= 𝑘 ∙ 𝑙𝑛𝑅 + 𝑝         (6.12) 

Note that R is the fracture strength, F is the 
cumulative failure probability; the regression 

constant 𝑝 = 𝑘 ∙ 𝑙𝑛𝜃 [3, 8, 10, 11]. 

Eq. (6.12) can be transformed into a linear 
one: 

𝑦 = 𝑘 ∙ 𝑥 + 𝑝                                  (6.13) 

Regression analysis on mechanical strength 
Ri, i = 1..8, (Ri values are given as  xci  in Table 3 for 
different calculated values, Fi), gives k = 2.68,  

p = 11.30;  = 77.2. 
N.B. The result can also be 

obtained/confirmed graphically using a W diagram. 
It should be mentioned that the linear 

dependence given by the relation (6.13), plotted in 
Fig. 5, has a very high correlation coefficient (R2 = 
0.995). It is thus certified that the bi-parametric W 
law defined by the equation: 

1 − 𝐹 = 𝑒−(
𝑅

77.2
)

2.57

                    (6.14) 

describes very well the distribution of 
experimental mechanical strength data. 
 

Table 3 

Primary data for parameter calculation k and   in Weibull law  

Date pentru calculul parametrilor k și   ai Legii Weibull 

i xi xci Fi Xi=ln xci Yi=lnln1/(1-Fi) 

1 30-40 35 0.11 3.555 -2.15 

2 40-50 45 0.22 3.807 -1.39 

3 50-60 55 0.33 4.007 -0.92 

4 60-70 65 0.44 4.174 -0.55 

5 70-80 75 0.55 4.317 -0.23 

6 80-90 85 0.67 4.442 0.10 

7 90-100 95 0.78 4.554 0.41 

8 100-110 105 0.90 4.654 0.83 
 

 

 
Fig. 5 - Correlation between computed data Yi with Xi from 

Table 3 / Corelarea datelor calculate Yi cu Xi din  
Tabelul 3. 

 
Correspondingly, for the obtained W, by 

using Eq. (6.3) - (6.6), statistical indices were 
computed (d = 0), giving: average 𝑚𝑤  =  77.2 ∙
(1.785) = 68.6𝑀𝑃, standard deviation 𝑠𝑤  =  77.2 ∙

[(1.769) − 2(1.385)]
1

2 = 28.9𝑀𝑃𝑎,  mode 𝑀𝑜𝑤  =

 77.2 ∙ 0.50.39 = 63.4𝑀𝑃𝑎,  median 

 𝑀𝑒𝑤  =  77.2 ∙ 0.6930.39 = 66.9𝑀𝑃𝑎. 
 

5.Conclusions 
Griffith microcracks size distribution at glass 

surface is stochastic in nature; therefore, the 
mechanical strength of flat glass should obey 
probabilistic laws. 

Probability distributions are statistical 
functions that give the expected outcomes of 
possible values for given data. In this case, 
probability distributions give the opportunity to 
predict the likelihood of failure at a given applied 
stress. Four of the most used statistical functions for 
modeling the experimental results were evaluated: 
normal law, gamma, log-normal and, respectively, 
Weibull with 2 parameters.  

The object of this evaluation was the flat 
glass mechanical tensile strength, that was tested 
by the 4-point method. Mechanical strength 
determinations were made on 50 samples of glass 
plates, and the experimental average and standard 
deviation are in a good agreement with other 
scientific results [5].  

Data processing by statistical tests showed 
that the hypotheses of the normal and bi-parametric 
gamma distribution are rejected. Also, the 
computed log-normal distribution fail to comply with 
the frequency distribution of the experimental data. 

Based on the regression analysis (R2 = 
0.995) when processing data in Section 4.4, the 
most conclusive result was obtained with the 
Weibull law. This result confirms other worldwide 
published findings, stating that Weibull law fits best 
mechanical strength data distribution for a series of 
materials, including glass [5, 11, 12]. The reason for 
this – somehow expected – outcome is the known 
versatility of the Weibull law. 

   

R² = 0.995
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