EVALUATING TIME DEPENDENT CHLORIDE DIFFUSION COEFFICIENT AND SURFACE CHLORIDE CONTENT FOR CONCRETE STRUCTURES

SANJEEV KUMAR VERMA1, SUDHIR SINGH BHADAURIÁ2, SALEEM AKHTAR1
1Civil Engineering Dept., Univ. Institute of Technology, Rajiv Gandhi Technological Univ., Airport Road Bhopal–462036, Madhya Pradesh, India
2S.G. S. Institute of Technology and Science, Indore-452003, Madhya Pradesh, India

Chloride ingress in concrete structures has been defined and modeled using Fick’s law of diffusion by many researchers, and most of the researchers considered diffusion coefficient and surface chloride content as constants. Now, it has been recognized that diffusion coefficient (D) and surface chloride content (Cs) varies with the increase in age of the structures. This paper presents a methodology for evaluating the values of D and Cs for concrete structures of different age groups, and also investigated the variation of these parameters with respect to age of structure by using results of a field survey.

Pătrunderea inilor clorură în betonul de structură a fost definită și descrișă pe baza legii Fick de majoritatea cercetătorilor, și cei mai mulți cercetători consideră coeficientul de difuzie și conținutul superficial de clorură constant și constant. Acum, a fost recunoscut că valorile coeficientului de difuzie, D și ale conținutului superficial de clorură, Cs, variază cu vârsta structurii de beton. Această lucrare prezintă metodologia de evaluare pentru D și Cs aferente structurilor de beton, pe diferite grupe de vârstă, și, de asemenea, s-a investigat variația acestor parametri în ceea ce privește vârsta structurii, prin utilizarea rezultatelor unui sondaj teren.

Keywords: Concrete; Chloride diffusion coefficient; Modeling transport.

1. Introduction

Ingress of chloride ion in reinforced concrete (RC) structures is topic of concern for the researchers. Significant amount of researches have been performed by researchers to model transportation of chloride ion into concrete structures. Modeling transport of chloride ion in concrete structures by the equations based on Fick’s law of diffusion is a most convenient method (Sun et al.) [1]. Fick’s second law is considered to be the most practical and elegant method available (Khatri and Sirivivatanon) [2]. Models based on Fick’s second law are developed, considering that chloride ion transportation is influenced by diffusion (Georgescu et al.) [3]. Most of the researchers considered chloride diffusion coefficient and surface chloride content as constants in the well established analytical solution of the Fick’s second law of diffusion.

\[
C(x,t) = C_0 [1 - erf \left(\frac{x}{\sqrt{4D t}} \right)]
\]

(1)

where \(C(x,t) \) is chloride content at depth \(x \) and time \(t \); \(C_0 \) is surface chloride content; \(D \) is diffusion coefficient and \(erf \) is the well known error function.

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\tau^2} d\tau
\]

(2)

Diffusion and absorption are the major transport mechanisms governing chloride penetration in concrete structures (Wang et al.) [4]. Equation (1) considered diffusion coefficient and surface chloride content as constants and independent of time. Later it has been observed that they changes with time. In last few years large research efforts have been made to investigate variation of diffusion coefficient and surface chloride content with time and it has been found that these parameters depend on time. Therefore, if constants ‘D’ and ‘Cs’ are used for long term predictions it results in gross errors (Costa and Appleton) [5]. Thus, it is very important to evaluate the dependency of these parameters on time or age of the structures (Costa and Appleton) [6]. Surface chloride content and apparent diffusion coefficient for structures have been subjected to ample experimental investigations during past years (Marano et al.) [7]. Several researchers considered D and Cs as variables [1, 5, 8-12] Sun et al. [1] considered the time and depth dependence chloride diffusion coefficient rather than constant, to predict service life of structure based on the analytical solution of Fick’s 2nd law of diffusion. Costa and Appleton [5] evaluated time and depth dependence D and Cs for different environmental conditions. Effect of variable curing and environmental conditions on the values of
these parameters has been presented by Alizadeh et al. [8]. Wang et al. [9] presented the decay of chloride diffusion coefficient with time. Cao and Sirivivatnanon [10] evaluated the dependency of diffusion coefficient on exposed time, temperature and stress factor. Cheung et al. [11] also considered exposure time and environmental conditions dependence surface chloride content. Variable diffusion coefficient has been also considered by Gouping et al. [12].

In this article, values of diffusion coefficient and surface chloride content for different age group of structures have been evaluated. To investigate the effect of time on D and Cs the experimental data obtained from field survey of different structures has been used. The experimental results and study indicate that the surface chloride content increases and diffusion coefficient decreases with the increase in age of the structure, as represented by eqn. (3) and (4) respectively.

\[\text{Cs} = a \cdot t^m \]
\[D = b \cdot t^n \]

where \(t \) is age of structure; \(a, b, m \) and \(n \) are empirical constants obtained by curve fitting of data.

2. Methodology to determine Cs and D

From the several surveyed structures located around city of Bhopal, India, concrete structures of age 11 to 60 years have been selected for this study as structures of age up to 10 years are not showing significant variation of these parameters with time. Chloride content as the percentage of weight of concrete has been evaluated at rebar level for the structures of different concrete cover and age by conducting rapid chloride test (RCT) as accepted by ASTM C114. Concrete cover of structures in millimeters (mm) has been measured by using well known cover-meter. Surveyed structures are classified into five groups (G1 – G5) based on their age as presented in Table 1. Average values of age, concrete cover and chloride content have been calculated for each group from experimental data and presented in Table 1.

Graphs are plotted between chloride content at rebar depth and depth from surface which is same as concrete cover, for all the five groups G1 to G5 as shown in Figures 1 to 5. By performing curve fitting of these data relation between chloride content and ‘C’ and depth ‘x’ similar to eqn. (5) have been obtained for each group. Negative sign indicates that chloride content decreases with increase in depth from surface.

\[C = -P \cdot x + Q \]

where, \(P \) and \(Q \) are empirical constants. By substituting \(x=0 \) in eqn. (5), chloride content at surface of the concrete ‘Cs’ has been evaluated for each group of structures.

Table 1

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Group</th>
<th>Age group (years)</th>
<th>No. of structures</th>
<th>Average age of structures (years)</th>
<th>Average concrete cover (mm)</th>
<th>Average chloride content at rebar depth (% wt. of concrete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>11 to 20</td>
<td>18</td>
<td>16.34</td>
<td>45</td>
<td>0.092</td>
</tr>
<tr>
<td>2</td>
<td>G2</td>
<td>21 to 30</td>
<td>25</td>
<td>26.64</td>
<td>42.47</td>
<td>0.182</td>
</tr>
<tr>
<td>3</td>
<td>G3</td>
<td>31 to 40</td>
<td>16</td>
<td>35.5</td>
<td>43.66</td>
<td>0.253</td>
</tr>
<tr>
<td>4</td>
<td>G4</td>
<td>41 to 50</td>
<td>12</td>
<td>46.42</td>
<td>43.85</td>
<td>0.292</td>
</tr>
<tr>
<td>5</td>
<td>G5</td>
<td>51 to 60</td>
<td>13</td>
<td>56.54</td>
<td>46.69</td>
<td>0.334</td>
</tr>
</tbody>
</table>
S. K. Verma, S. S. Bhadauria, S. Akhtar / Evaluarea dependenței de timp a coeficientului de difuzie a ionilor de clorură și a conținutului superficial de clorură pentru structurile din beton

Table 2

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Group</th>
<th>Relation between C and x</th>
<th>Cs (% wt. of concrete)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>$C = -0.006x + 0.391$</td>
<td>0.391</td>
</tr>
<tr>
<td>2</td>
<td>G2</td>
<td>$C = -0.011x + 0.684$</td>
<td>0.684</td>
</tr>
<tr>
<td>3</td>
<td>G3</td>
<td>$C = -0.009x + 0.651$</td>
<td>0.651</td>
</tr>
<tr>
<td>4</td>
<td>G4</td>
<td>$C = -0.011x + 0.796$</td>
<td>0.796</td>
</tr>
<tr>
<td>5</td>
<td>G5</td>
<td>$C = -0.006x + 0.643$</td>
<td>0.643</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Group</th>
<th>$D \times 10^{-12}$ (m2/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G1</td>
<td>1.394</td>
</tr>
<tr>
<td>2</td>
<td>G2</td>
<td>0.966</td>
</tr>
<tr>
<td>3</td>
<td>G3</td>
<td>1.455</td>
</tr>
<tr>
<td>4</td>
<td>G4</td>
<td>0.819</td>
</tr>
<tr>
<td>5</td>
<td>G5</td>
<td>1.473</td>
</tr>
</tbody>
</table>

D = \frac{C_{c,\text{avg}}^2}{4T_{avg}} \left[\ln \left(\frac{1 - C_{\text{avg}}}{1 - C_s} \right) \right]^{-2} \quad (6)

where $C_{c,\text{avg}}$ is average value of concrete cover in mm, C_{avg} is average value of chloride content at rebar depth and T_{avg} is average age of the structures. So diffusion coefficient for each group has been calculated using eqn. (6) and values from Table 1 and Table 2. Values of D evaluated in m2/sec, for each group of structures have been presented in Table 3.

3. Time dependence of surface chloride content

By plotting graph between surface chloride content and average age of each group, and by curve fitting of this data relation between Cs and age of the structure is obtained as shown in Figure 6 and the relation is shown in equation (7).

$$Cs = 0.135t^{0.432} \quad (7)$$

This relation is similar to eqn. (3), where $a = 0.135$ and $m = 0.432$. From eqn. (7) it has been observed that surface chloride content increases with the increase in age of the structure.

4. Time dependence of diffusion coefficient

Relation between diffusion coefficient and age of structure has been obtained by plotting graph between surface chloride content and average age of each group and performing curve
fitting of this data, as shown in Figure 7 and the relation is shown in equation (8).

\[D = 1.764 \, t^{-0.11} \] (8)

This relation is similar to eqn. (4), where \(b = 1.764 \) and \(n = 0.11 \), from eqn. (8) it has been observed that surface chloride content decreases with the increase in age of the structures.

4. Conclusions

Ingress of chloride in concrete structures has been defined using Fick’s second law of diffusion. Normally diffusion coefficient and surface chloride content are considered to be constant. However, the present study indicates that the diffusion coefficient and surface chloride content depends on the time.

Structures of age between 11 and 60 years have been selected for this study. Chloride content at rebar level and concrete cover of different structures has been evaluated using rapid chloride test and cover-meter. Surveyed structures are classified into five groups (G1 – G5) according to the age group as shown in Table 1. Surface chloride content and diffusion coefficient for each group of structures have been evaluated and presented in Table 2 and table 3. It has been observed from, eqn. (7) and (8) that the surface chloride content increases and diffusion coefficient decreases with the increase in age of the structures. These values of D and Cs can be used by the researchers to evaluate chloride content of concrete structures of different age at depth ‘x’ and time ‘t’.

REFERENCES

1. Y. Sun, T. Chang and M. Liang, Service life prediction for concrete structures by time-depth dependent chloride diffusion coefficient, J Mat Civil Eng, 2010, 22(11), 1187.

12. L. Gouping, H. Fangjian, and W. Yongxian, Chloride ion penetration in stressed concrete, J Mat Civil Eng, 2011, 23(8), 1145.