INFLUENȚA ADAOSURILOR MINERALE ASUPRA PROPRIETĂȚILOR FIZICO-MECANICE ALE BETOANELOR INFLUENCE OF MINERAL ADDITIONS ON THE PHYSICAL-MECHANICAL PROPERTIES OF CONCRETES

ALEXANDRINA CUIBUŞ^{1*}, ZOLTAN KISS¹, MARIA GOREA²

¹Universitatea Tehnică din Cluj-Napoca, str. Memorandumului nr. 28, Cluj-Napoca, România ²Universitatea "Babeş-Bolyai", str. M. Kogălniceanu nr.1, Cluj-Napoca, România

Lucrarea prezintă caracteristicile fizico-mecanice ale betoanelor (7 compoziții) realizate cu adaosuri de 10% cenușă zburătoare (FA), 10% metacaolin (MK), 10%FA+10%MK, 10% silice ultrafină (SF), 10%SF+10%FA, 10%SF+10%MK, prin substituirea a 10%, respectiv 20% ciment. Conform determinărilor pe betonul în stare proaspătă - densitatea, tasarea, răspândirea și volumul de aer oclus, acesta este încadrat în categoria betoanelor cu masă volumică normală. Rezistențele la compresiune ale betoanelor cu adaosuri de cenuşă de termocentrală, silice ultrafină și metacaolin la 28 zile sunt apropiate de cele ale betonului etalon - R_{c28}=55,01MPa sau chiar mai mari. Rezistențele la încovoiere sunt mai mari la termene mari de cu excepția compoziției de beton întărire, си 10%FA+10%MK (S-4). Modulul de elasticitate, pentru toate compozițiile studiate, are valori superioare valorii minime admise pentru clasa de beton C35/45. Studiile experimentale au demonstrat că reducerea cantității de ciment din betoane, fără alterarea proprietăților, este posibilă prin valorificarea unor subproduse industriale, deșeuri, argilă arsă

Keywords: concrete, fly ash, metakaolin, silica fume, pozzolan

1. Introducere

În ultimii ani datorită cererii mari de beton în construcții, consumul de ciment a crescut, fapt ce are un impact major asupra mediului, datorită cantităților mari de CO₂ emise în atmosferă, dar și a consumului mare de energie necesar producerii cimentului [1-6]. Ca urmare, se caută soluții alternative de fabricare a cimentului cu adaosuri, respectiv înlocuirea unei cantități de ciment cu adaosuri minerale disponibile local.

Betoanele cu adaosuri puzzolanice sunt mult studiate, în general, atât datorită necesității realizării unor materiale performante dar și posibilității de valorificare a unor subproduse industriale, respectiv deșeuri.

Adaosurile puzzolanice sunt materiale

This study presents the physical-mechanical characteristics of the concretes (7 compositions) accomplished with 10% fly ash (FA), 10% metakaolin (MK), 10%FA+10%MK, 10% silica fume (SF), 10% SF+10%FA, 10%SF+10%MK additions by substitution of 10% respectively 20% cement. According to the analysis performed on the fresh concrete - density, slump, flow and entrapped air volume, this concrete is of normal volume mass concretes type. The compressive strengths of the concretes with additions of fly ash, silica fume and metakaolin to 28 days are closely to those of the reference concrete i.e. 55.01 MPa, or even higher. The flexural tensile strengths are higher after longer hardening periods of time, except the 10% FA + 10% MK concrete composition (S-4). The elasticity modulus, for all the studied compositions, has higher values than the minimum allowed value for C35/45 concrete class. The experimental studies showed that the reduction of the cement quantity in the concretes, without altering the properties, is possible by using of some industrial byproducts or wastes (fly ash or silica fume) and fired clay(metakaolin).

1. Introduction

In the last years, the consumption of the cement has increased, because of the high demand of the concrete in constructions, what has a major impact on the environment, mainly because of the high quantities of CO_2 escaped into atmosphere as well as of the high necessary of energy for cement production [1-6]. Therefore, it is searching some alternative solutions for manufacturing of the cements with additions, by replacing of some amounts of cement with mineral additions that are locally available.

The concretes with pozzolan additions are more studied, generally, both due to the necessity of realizing some advanced materials and for the possibility of capitalizing of some industrial byproducts and wastes.

^{*} Autor corespondent/Corresponding author,

E-mail: sandacuibus@yahoo.com

naturale de compoziție silicioasă, silicoaluminoasă, sau o combinație a acestora care conțin silice, respectiv alumină cu un grad de cristalinitate scăzut și ca atare sunt caracterizate de o reactivitate ridicată [7-12].

Reacția puzzolanică a cenuşii zburătoare în amestecul de beton depinde de mai mulți factori și anume compoziția chimică a cenușii zburătoare și a cimentului Portland, morfologia particulelor, finețea de măcinare, căldura de hidratare degajată [13]. Compoziția și reactivitatea cenușii zburătoare influențează reologia și proprietățile betonului atât în stare proaspătă cât și întărită. Se recomandă a se accepta cenușa zburătoare prin încercări pe amestecuri de beton, luând în considerare lucrabilitatea, rezistența la compresiune și durabilitatea betonului [14].

He C. şi colaboratorii [15], au arătat că dintre materialele argiloase, caolinul şi unele tipuri de montmorilonit prezintă activitate puzzolanică ridicată. Acestea, prin deshidratare, la temperaturi de 550-900 0 C dau faze amorfe de aluminosilicați, AS₂ şi AS₄ care, în amestecul de beton reacționează, în prezența apei, cu Ca(OH)₂ format în urma hidratării cimentului Portland, cu formare de hidrosilicați de calciu (C-S-H) [16]. Prin realizarea unei cantități suplimentare de C-S-H se reduce dimensiunea şi numărul porilor din matricea liantă, ducând la îmbunătățirea proprietăților mecanice şi a impermeabilității betonului, iar prin scăderea conținutului de Ca(OH)₂ se realizează o densificare a matricii [16].

Studii recente arată că prin încorporarea în beton a adaosurilor minerale având o finețe de măcinare mai mare decât a cimentului Portland, are loc accelerarea procesului de hidratare a silicatului tricalcic (C₃S) [1], care este responsabil în cea mai mare măsură de realizarea rezistenței la compresiune [7].

Cenuşa zburătoare şi metacaolinul obținut prin calcinare din caolinuri sau ca deşeu rezultat în unele tehnologii, sunt materiale mult studiate în compoziții de betoane datorită reactivității lor [17,18].

Caracteristicile fizice și chimice ale metacaolinului obținut prin deshidratarea caolinului sunt influențate de impuritățile din materia primă utilizată, temperatura și durata procesului de calcinare, precum și de modul în care se face răcirea materialului.

În ultimele decenii, silicea ultrafină s-a dovedit a fi mineralul cu cea mai mare activitate puzzolanică, datorită conținutului său ridicat de dioxid de siliciu amorf, a dimensiunii foarte fine a particulelor suprafaței specifice Şİ mari Amestecurile de beton care au în compoziție ciment Portland și silice ultrafină se caracterizează printr-o structură cu pori microscopici denși, permeabilitate rezistență redusă, mare la agresivități chimice: ploaie acidă, apă de mare, săruri din agenți de dezghețare, cicluri de înghețThe pozzolan additions are natural materials with a siliceous composition, silico-aluminous, or a combination of these which contain silica and alumina with a low crystallinity degree and therefore they are characterized by a high reactivity [7-12].

The pozzolan reactivity of the fly ash into the concrete mixture depends of many factors like its chemical composition, its particles morphology, its grains size, its cristalinity degree [13]. The composition and the reactivity of the fly ash influence the rheology and the concrete properties both in fresh and hardened state. It is recommended to accept the fly ash additions in concrete, after experimental testing on this, taking into account the workability, the compressive strength and the concrete durability [14].

He C. and the collaborators [15] had shown that, among the clayey materials, the kaolin and some types of montmorillonite present high pozzolan activity. These minerals, by thermal treatment, at 500-900 $^{\circ}$ C give aluminosilicates amorphous phases - AS2 and AS4 which, into the concrete mixture react, with Ca(OH)₂ formed by hydrating of the Portland cement minerals, forming calcium silicate hydrates (C-S-H) [16]. By formation of a supplementary amount of C-S-H the size and number of the pores into the binder matrix is reduced, leading to the improvement of the mechanical properties. By diminish of Ca(OH)₂ quantity a matrix densification and a great impermeabilisation are realized [16].

Recent studies have shown that by adding to the concrete of the mineral admixtures with a grain sizes smaller than of the Portland cement, an acceleration of the tricalcium silicate (C_3S) hydration process take place [1]. This compound is the most responsible for high compressive strength development [7].

The fly ash and the metakaolin obtained by firing of the kaolins or as waste resulted in some technologies, are materials very much studied in concretes compositions because of their reactivity [17, 18]. The physical and chemical characteristics of the metakaolin obtained by the kaolin dehydration are influenced by the impurities in the raw materials, the temperature and the duration of the firing process, as well as the way of cooling.

In the last decades, the silica fume become a very interesting pozolan material, due to its great pozzolan activity explained by its amorphous silicon dioxide high content, its very fine particles size and its high specific surface area. The concrete mixtures with Portland cement and silica fume are characterized by a structure with dense microscopic pores, a small permeability, high strength at chemical attack of acid rain, sea water, salts come from defrosting agents, freeze-thaw cycles etc [19].

By replacing a quantity of cement with mineral additions (in binary and ternary systems) it

dezgheţ [19].

Prin înlocuirea unei cantități de ciment cu adaosuri minerale (în sisteme binare și ternare) se pot realiza betoane durabile, similare cu betoanele obișnuite cu ciment Portland, mai avantajoase din punct de vedere economic și ecologic.

Scopul lucrării este realizarea de compoziții de betoane cu adaosuri indigene de cenuşă de termocentrală (FA), metacaolin (MK) și silice ultrafină (SF), substituind cimentul în proporție de 10 %, respectiv combinațiile ternare de ciment cu (10%FA+10%MK), (10%SF+10%FA), (10%SF+ +10%MK) și studierea comparativă a influenței acestor adaosuri minerale asupra proprietăților fizico-mecanice ale betoanelor.

2. Parte experimentală

2.1. Materiale

Materialele folosite la realizarea amestecurilor de beton sunt:

- ciment Portland CEM I 42,5R, conform SR EN 197-1:2011;

- agregate: nisip de râu sort 0-4, agregat grosier de carieră sort 4-8, 8-16, conform SR EN 12620+A1:2008;

- aditiv superplastifiant pe bază de polieter-carboxilat, conform SR EN 934-2+A1:2012;

- adaosuri minerale / puzzolane: cenuşă zburătoare, conform SR EN 450-1:2006, silice ultrafină, metacaolin.

Cenuşa zburătoare folosită este un deşeu rezultat în urma arderii cărbunilor pulverizați la Termocentrala Mintia, pentru care indicele de reactivitate determinat este de 86,96%, conform SR 3832-8:1999.

Suprafața specifică, măsurată cu permeabilimetrul Blaine pentru fracția mai mică de 90 µm este 5282 cm²/g.

Metacaolinul s-a obținut prin calcinarea caolinului la temperatură de 780 °C și păstrarea unui palier de 3 ore și 40 min. Indicele de reactivitate al metacaolinului determinat este de 82,13%.

Suprafața specifică, măsurată cu permeabilimetrul Blaine, este de 5145 cm²/g.

Silicea ultrafină este comercializată sub denumirea Elkem Microsilica Grade 940-U-S de BASF The Chemical Company.

2.2. Compoziții realizate

In cadrul experimentărilor s-au proiectat şapte compoziții de betoane. S-1 este compoziția etalon care conține ciment, nisip și agregat de diferite sorturi. Pentru studierea comparativă a proprietăților betoanelor cu adaosuri s-a substituit 10 % din cantitatea de ciment cu cenuşă zburătoare, cu metacaolin și silice ultrafină (S-2, S-3, S-5), respectiv 20 % cu adaosuri combinate can be done some sustainable concretes, similar to the ordinary Portland cement concretes, more advantageous from economical and ecological point of view.

The purpose of this paper was to realize some concrete compositions with indigenous additions as thermal power plant ash (fly ash FA), metakaolin (MK) and silica fume (SF). These materials replace Portland cement in 10% and 20% ratio, respectively, in the binding ternary compositions with (10% FA+ 10% MK), (10% SF+ 10% FA), (10% SF+ 10% MK). For such concretes, the influence of mineral additions on the physical-mechanical properties was studied.

2. Experimental

2.1. Materials

The materials used for the realization of the concrete admixtures were:

- Portland cement CEM I 42,5R, according to SR EN 197 -1:2011;

- aggregates - river sand sort 0-4, pit coarse aggregate sort 4-8, 8-16, according to SR EN 12620+A1:2008;

- superplasticizer additive based on polyether carboxylates, according to SR EN 934-2+A1:2012; - mineral/pozzolan additions - fly ash, according to SR EN 450-1:2006, silica fume, metakaolin.

The used fly ash is a waste resulted by burning of the pulverized coals at Mintia Thermal Power Plant, for which the reactivity index is 86.96%, according to SR 3832-8:1999. The specific surface area, measured with Blaine permeabilimeter for the fraction smaller than 90 μ m was 5282cm²/g.

The metakaolin was obtained by firing the kaolin at 780 ^oC temperature and keeping at this for 3 hours and 40 minutes. The determinated reactivity index of the metakaolin was 82.13%. The specific surface area, measured with Blaine permeabilimeter, was 5145 cm²/g.

The silica fume was a sort marketed under the name of Elkem Microsilica Grade 940-U-S by BASF The Chemical Company.

2.2. Concrete compositions

In the experimental part, 7 compositions of concrete with mineral additives have been studied. S-1 was the control composition that contain cement, sand and different sorts of aggregate. For the comparative study of the properties of the concretes with additions, 10% of the cement amount was sustituted with fly ash, metakaolin and silica fume (S-2, S-3, S-5), respectively 20% with combinated additions (10% fly ash and 10% metakaolin into S-4 composition, 10% fly ash and 10% silica fume into S-6 composition and 10% silica fume and 10% metakaolin intot S-7 composition).

The water / cement ratio was 0.4 for S-1 composition, 0.43 for S-2, S-3 and S-5

Tabelul 1

Compoziția betoanelor studiate/ The composition of the studied concretes

Material / simbol amestec								
Material / mixture symbol	U.M.	S-1	S-2	S-3	S-4	S-5	S-6	S-7
Ciment/Cement CEM I 42.5R	Kg/m ³	450	405	405	360	405	360	360
Nisip de râu / <i>River sand sort</i> 0-4mm	Kg/m ³	884	875	875	870	870	870	869
Agregat grosier/Coarse aggregate sort 4-8mm	Kg/m ³	354	350	350	348	348	348	347
Agregat grosier/Coarse aggregate sort 8-16mm	Kg/m ³	530	525	525	522	522	522	521
Cenuşă zburătoare/ Fly ash	Kg/m ³	-	45	-	45	-	45	-
Silice ultrafină/ Silica fume	Kg/m ³	-	-	-	-	45	45	45
Metacaolin/ Metakaolin	Kg/m ³	-	-	45	45	-	-	45
Apă/ Water	l/m ³	177	177	177	177	177	177	177

(10 % cenuşă zburătoare și 10 % metacaolin în compoziția S-4,10 % cenuşă zburătoare și 10 % silice ultrafină în compoziția S-6, respectiv 10 % silice ultrafină și 10 % metacaolin în compoziția S-7).

Raportul apă/ciment este 0,4 pentru compoziția S-1, de 0,43 pentru compozițiile S-2, S-3 și S-5 și respectiv 0,49 pentru compozițiile S-4, S-6 și S-7. In toate amestecurile s-a folosit același tip de superplastifiant (Adium 150), în cantitate de $3,15 \text{ l/m}^3$ beton. Dozajele betoanelor studiate sunt prezentate în tabelul 1.

2.3. Metode experimentale

Prepararea betonului s-a făcut în malaxor, în care agregatele se introduc în ordinea sort 8-16mm, sort 4-8mm şi sort 0-4mm. Agregatele se amestecă aproximativ 30 secunde, se introduce jumătate din cantitatea de apă și se continuă amestecarea timp de 90 secunde. Se adaugă cantitatea de ciment și adaosuri minerale și se mai amestecă timp de 3 minute. Peste această compoziție se adaugă restul de apă cu aditiv și se amestecă 6 minute. Amestecul este turnat în forme prismatice de dimensiuni 100x100x550mm si 100x100x300mm, respectiv cubice de dimensiuni 150x150x150mm. Formele sunt acoperite cu folie până la scoaterea din tipar, aprox 24 ore, apoi sunt decofrate. După decofrare epruvetele sunt păstrate în apă la temperatura de 20±2 ⁰C până la termenul de încercare.

2.3.1.Determinări pe betonul în stare proaspătă

Lucrabilitatea betonului s-a determinat prin metoda tasării și prin metoda răspândirii. Conținutul de aer oclus s-a determinat prin metoda volumetrică cu presiune, cu ajutorul dispozitivului de măsurare cu manometru. Densitatea aparentă s-a determinat cu ajutorul unui vas volumetric de 10 dm³.

2.3.2.Determinări pe betonul în stare întărită

Determinările pe betonul întărit s-au efectuat pe epruvete de dimensiuni și formă conform standardelor în vigoare:

- cubică (150x150x150 mm) pentru

compositions, and respectively 0.49 for S-4, S-6, S-7 compositions. Into all the concrete mixtures it was used the same type of superplasticizer (Adium 150), in amount of 3.15 l/m³. The studied concretes dosages are presented in the Table 1.

2.3. Experimental methods

The concrete preparation was made in a concrete mixer, into which the aggregates were introduced in order: sort 8-16mm, sort 4-8mm and sort 0-4mm. The aggregates were mixed for about 30 seconds, and then the half of the quantity of water was introduced and the mixing was continued for 90 seconds. It was added the cement and the mineral additions, and mixing was kept for 3 minutes. Over this composition the rest of the water and super plasticizer were added and mixed for 6 minutes. The mixtures were casted into prismatic molds of 100x100x550mm and 100x100x300mm sizes respectively and cubic molds of 150x150x150mm sizes. The molds were covered with a foil for about 24 hours until the specimens were hardened. After this operation the specimens were keept in water at the 20±2 °C until the probation term.

2.3.1.Determinations on fresh concrete

The concrete workability was determined by the slump and the flow methods. The entrapped air content was determined by the volumetric with pressure method, using the measuring manometer device. The apparent density was determined using a 10 dm³ volumetric vessel.

2.3.2. Determinations on hardened concrete

The determinations on hardened concrete were made on the specimens with sizes and shapes according to standards:

- cubic (150x150x150mm) for compressive strength, freeze-thaw strength, the ingression depth of water under pressure;

- prismatic (100x100x550mm) for tensile and flexural strength and (100x100x300mm) for the static elasticity modulus at compression. rezistenta la compresiune, rezistenta la înghetdezghet, adâncimea de pătrundere a apei sub presiune;

- prismatică (100x100x550mm) pentru rezistenta la întindere prin încovoiere și (100x100x300mm) pentru modulul de elasticitate static la compresiune.

3. Rezultate și discuții

Rezultatele determinărilor efectuate pe betonul în stare proaspătă sunt prezentate în tabelul 2.

3. Results and discussions

The results of the determinations realised on fresh concrete are presented in Table 2

According to the obtained data the studied concretes compositions present densities which frame them in the category of normal volumetric mass concretes.

As expected, the density decreases by introducing of finer and lighter than Portland cement mineral additions, into the binding systems, the decrease being proportional with the introduced amount.

Tabelul 2

Caracter	risticile bet	oanelor în s	tare proaspa	ătă/ The cl	haracteristics	of fresh concr	retes	laboral
Determinări beton proaspăt /								
amestec / Determinations fresh								
concrete/ mixture	U.M.	S-1	S-2	S-3	S-4	S-5	S-6	S-7
Densitatea/ Density	Kg/m ³	2420	2380	2380	2370	2370	2370	2365
Tasarea/ Slump	mm	130	60	50	40	110	50	40
Răspândirea/ Flow	mm	400	290	270	270	395	325	290
Volumul aer oclus/ Enttraped								
air volume	%	1.7	1.5	1.65	1.6	1.75	1.65	1.7

Conform datelor obtinute, compozitiile de analizate prezintă densități care le betoane încadrează în categoria betoanelor cu masă volumică normală. Așa cum era de așteptat, densitatea scade prin introducerea de adaosuri minerale, fine și mai ușoare decât cimentul, în sistemele liante, scăderea fiind proporțională cu cantitatea introdusă.

Se observă, de asemenea, o scădere a lucrabilitătii, respectiv a răspândirii betonului atât la amestecurile binare cât și ternare. Excepție face amestecul cu 10% silice ultafină, care are tasarea de 110mm, încadrându-se în clasa de tasare S3. Celelalte compoziții de beton care conțin metacaolin și cenușă de termocentrală, au tasarea mică, corespunzătoare clasei S2. Absorbția mare de apă a metacaolinului și mobilitatea redusă a cenusii zburătoare determină o creștere a vâscozității pastelor și implicit o scădere a lucrabilității.

Volumul de aer oclus în amestecurile de beton cu adaosuri minerale este egal sau mai mic decât cel din betonul etalon, cu excepția amestecului S-5 pentru care este puțin mai mare. Explicația ar fi granulometria adaosurilor care poate determina o compactizare a betonului dar, în acelaș timp, și introducerea aerului cu particule de dimensiuni mici.

Rezistențele mecanice ale betonului sunt proprietăți importante care se corelează cu compozitia, tipul și cantitatea de adaos.

Rezistențele la compresiune, f_{cm,} obținute pentru amestecurile de beton considerate la termenele de 1, 3, 7, 28, 56 și 90 zile sunt prezentate în figura 1.

It is, also observed, a decrease of the workability, respectively of the concrete flow, both for those containing binary and ternary binding materials. The exception was the mixture with 10% silica fume, which had a slump of 110 mm, allowing it framing into S3 slump class. The others concrete compositions which contain metakaolin and fly ash, had low slump, corresponding to the S2 slump class. The metakaolin high water absorption and the fly ash low mobility determinate an increase of the pastes viscosity and therefore a deacrese of the concrete workability.

The air enttraped volume into the concretes compositions with mineral additions was equal to or less than the one of the reference concrete. The S-5 composition has the highest value. The explanation would be the granulometry of the additions which can determinate a more compact structure of concrete but, in the same time, the introduction of the air with small particles too.

The mechanical strengths of concretes are important properties related with their composition, the type and amount of additions.

The compressive strengths f_{cm.} obtained for investigated concretes considered the for hardening terms of 1, 3, 7, 28, 56 and 90 days are presented in Figure 1.

According to the "Code of practice for the manufacturing concrete" the average compressive strength at 28 days, for the concrete with specific properties, must be higher than the value of the characteristic strength (fck) with at least 6 MPa to 12 MPa

Fig. 1 - Rezistența la compresiune a betoanelor/ The compressive strength of the concretes.

Conform "Codului de practică pentru producerea betoanelor" media rezistenței la compresiune la 28 zile, a betonului cu proprietăți specificate trebuie să fie superioară valorilor rezistenței caracteristice (f_{ck}) cu cel puțin 6 MPa până la 12 MPa

 $f_{cm} \ge f_{ck}$ +6......12 MPa (dispersia rezultatelor)

Din examinarea valorilor medii ale rezistențelor la compresiune se observă o diminuare a acestora la termene scurte de întărire (1 și 3 zile) pentru amestecurile S-2, S-3, S-4 și S-6 și o valoare aproximativ egală cu a etalonului pentru amestecul S-5. Valorile mai mici se explică prin reacția puzzolanică lentă a adaosurilor de cenușă zburătoare și metacaolin. Silicea ultrafină are o reactivitate mai ridicată chiar la termene scurte de întărire. La 7 zile, se remarcă o creștere semnificativă a rezistențelor pentru compozițiile cu adaosuri minerale. De la 28 de zile, rezistentele la compresiune ale amestecurilor cu adaosuri sunt egale sau chiar depășesc rezistențele etalonului, cu excepția compoziției S-4. Tendința de creștere se continuă la 56 și 90 de zile de întărire datorată contribuției reacției lente a adaosurilor puzzolanice, formare de cantități suplimentare de CU hidrocompuşi.

Amestecurile de beton S-1, S-2, S-3, S-6, S-7 au valori medii ale rezistenței la compresiune la 28 zile de la 54,51MPa până la 57,78MPa, corespunzătoare clasei C35/45. Amestecul de beton cu 10% SF (S-5) are valoarea rezistenței la compresiune la 28 zile de 63,96MPa, corespunzătoare clasei de beton C40/50. Prin încorporarea adaosurilor de cenuşă de termocentrală, silice ultrafină și metacaolin se realizează betoane cu rezistențe mecanice la 28 zile apropiate de cele ale betonului etalon

$$f_{cm} \ge f_{ck}+6.....12$$
 MPa (the dispersion of the

results)

By examination of the average values of the compressive strengths, it can be seen small values of these at short hardening terms (1 and 3 days) for S-2, S-3, S-4, and S-6 compositions and an approximately equal value to the one of the reference, for the S-5 composition. The lower values are explained by the smaller cement content in these compositions and slow puzzolan reaction of the fly ash and metakaolin additions. For S-5 composition, silica fume has a higher reactivity even at short hardening term. At 7 days, it can be observed a significant increase of the strengths for the compositions with mineral additions. For 28 days, the compressive strengths of the concretes with additions are equals to or even exceed the strengths of the reference composition, except the S-4 composition. This increasing trend is continued until 56 and 90 days of curing, pozzolan reaction having a contribution to form the supplementary hydrates amounts.

S-1, S-2. S-3. S-6, S-7 concrete compositions had the average compressive strengths at 28 days in the range of 54.51 MPa to 57.78 MPa, values corresponding to C35/45 class. The concrete with 10% SF (S-5) had a compressive strenght value at 28 days equal with 63.96 MPa, corresponding to the C40/50 concrete class. The concretes obtained by incorporating fly ash, silica fume and metakaolin additions in composition have mechanical strengths at 28 days, close to the ones of the reference concrete R_{c28}=55.01MPa or even higher. For instance, for S-5 composition with 10% silica fume, the value of the compressive strength was 63.96 MPa, for S-6 was 56.45 MPa, and for S-7 was 57.78MPa. The increased strengths are ascribed to the puzzolan reaction between the calcium hydroxide resulted R_{c28}=55,01MPa sau chiar mai mari. De exemplu, pentru compoziția S-5 cu 10 % silice ultrafină, valoarea rezistenței la compresiune este de 63,96MPa, pentru S-6 de 56,45MPa iar pentru S-7 de 57,78MPa. Creșterea rezistențelor este atribuită reactiei puzzolanice dintre hidroxidul de calciu rezultat la hidratarea cimentului cu SiO₂ și Al₂O₃ activ din adaosul folosit cu formarea de cantități suplimentare de hidrosilicati și hidroaluminați de calciu. Adaosul de 10% silice ultrafină conduce la o creștere a rezistenței la compresiune fată de amestecul etalon, la toate termenele de încercare. Se poate concluziona că betoanele în care se substitue 20 % ciment cu silice ultrafină și cenușă zburătoare sau metacaolin dezvoltă rezistențe comparabile cu a etalonului la termene mari de întărire. Aşadar, adaosurile indigene de cenuşă zburătoare și metacaolin se pot utiliza în compoziții de betoane atât în sistem binar (substituind 10 % ciment) cât și ternar în combinație cu silicea ultrafină, deoarece rezistentele mecanice la termene lungi de întărire sunt mari.

Rezistența la întindere prin încovoiere, f_{ct,fi} (MPa), s-a efectuat conform SR EN 12390-5:2009, prin aplicarea sarcinii într-un punct central de încărcare. Valorile sunt prezentate în figura 2.

Valorile rezistentei la întindere prin încovoiere pe epruvetele de beton cu adaosuri minerale sunt apropiate de valoarea etalonului, la termene scurte de încercare și cresc la vârste de 28, 56, 90 zile. Aşa cum se aştepta, compoziția S-5 cu 10 % silice ultrafină are valorile cele mai mari ale rezistențelor atât la compresiune cât și la încovoiere. Se poate spune că silicea ultrafină reacționnează rapid cu Ca(OH)2 din pasta de ciment dând compuși de hidratare care cresc rezistențele mecanice. În mod similar, se comportă și betonul S-3, cu adaos de metacaolin ceea ce demostrează că reacția puzzolanică are loc cu viteză mai mare după 7 zile de la prepararea betonului

after hydrating the cement with active SiO_2 and Al_2O_3 from the used additions with formation of supplementary amounts of calciumsilicate and aluminate hydrates. The addition of 10% silica fume leads to an increase of the compressive strength towards the reference composition, at all test terms.

It can be concluded that the concretes in which 20% of Portland cement is substituted with silica fume and fly ash or metakaolin, develop comparable strenghts with those of the reference, for the long hardening periods of time. Thus, the indigenous additions - fly ash and metakaolin - can be used into concretes compositions, both in binary binding systems (substituting 10% of cement) and in ternary systems, in combination with silica fume.

The flexural tensile strength, f $_{ct,fl}$ (MPa), was made according to SR EN 12390-5:2009, by applying the load in a central loading point. The values of the flexural tensile strength are presented in Figure 2.

The values of the flexural tensile strength of the mineral additions concretes samples, are closely to those of the reference, at short hardening terms (1-7 days) and they increase at 28, 56 and 90 days. As was expected, S-5 composition with 10% silica fume had the highest strengths values, both at compression and at flexure. It is confirmed that the silica fume quickly reacts with Ca(OH)₂ from the cement paste, giving some hydrated compounds which contribute to the increase of the mechanical strengths. In a similar way behaves S-3 concrete with metakaolin addition, which demonstrates that the pozzolan reaction could have a high rate after 7 days of concrete curing.

Therefore, the flexural tensile strengths of the concretes with 10% and 20% respectively mineral additions as substitutes of the Portland cement are higher than the ones of the concrete

Fig. 2 - Rezistența la întindere prin încovoiere a betoanelor / The flexural tensile strength of the concretes.

Aşadar, rezistențele la întindere prin încovoiere pentru amestecurile de beton cu 10% respectiv 20% adaos mineral în compoziția betonului ca substituent al cimentului sunt mai mari decât cele ale betonului fără adaos pentru perioade de întărire de peste 7 zile.

Modulul de elasticitate static la compresiune al betonului conform STAS 5585-71 este definit ca fiind raportul între creșterea efortului unitar normal și creșterea deformației specifice corespunzătoare, înregistrate în intervalul $0,05f_{c,pr}$ și $0,3f_{c,pr}$ ($f_{c,pr}$ fiind rezistența betonului obținută prin solicitarea la compresiune a epruvetei prismatice).

without addition for more 7 days of hardening.

The concrete static elasticity modulus at compression, according to STAS 5585-71 is defined as the ratio between the increase of the normal unitary effort and the increase of the corresponding specific deformation recorded in the range $0.05f_{c,pr}$ and $0.3f_{c,pr}$ ($f_{c,pr}$ being the concrete strength obtained by the request at compressive of the prismatic specimens).

The values of the elasticity modulus E_{cm} (GPa) obtained by attemptting the concrete specimens for the 7 studied compositions are presented in Table 3.

Tabelul 3

Modulul de elasticitate E_{cm} pentru compozițiile studiate/ *The elasticity modulus E_{cm} for the studied compositions*

Caracteristica							
Characteristic	S-1		0.0	0.4	0.5		0.7
Compoziția	5-1	5-2	5-3	5-4	5-5	5-6	5-7
Composition							
E _{cm} (GPa)	41.67	41.84	41.32	40.17	41.48	39.36	39.63

Tabelul 4

Compoziția / Composition	npoziția / Composition		5-3	S-4	S-5	5-6	S-7
Caracteristica / Characteristic	0-1	0-2	0-0	0-4	3-3	3-0	5-7
Adâncimea de pătrundere a apei (mm) la 28 zile	18	14	11	15	15	14	15
Water ingression depth (mm) at 28 days							
Adâncimea de pătrundere a apei (mm) la 56 zile	15	11	8	13	11	13	14
Water ingression depth (mm) at 56 days		11	0	15		15	14

Valorile modulului de elasticitate E_{cm} (GPa) obținute prin încercarea epruvetelor de beton pentru cele 7 compoziții studiate, sunt prezentate în tabelul 3.

Modulul de elasticitate secant (între σ_c =0 și 0,4f_{cm})E_{cm} pentru betonul de clasă de rezistență C35/45 conform standardelor, trebuie să fie de minim 34GPa.

Modulul de elasticitate pentru compozițiile de beton studiate se încadrează în intervalul 39,36 la 41,84GPa, având valori superioare valorii minime admise pentru clasa de beton C35/45. Valoarea maximă s-a obținut pentru compoziția de beton cu 10% cenuşă de termocentrală.

Adâncimea de pătrundere a apei, ca indiciu al permeabilității, s-a determinat în trei trepte, prin aplicarea apei cu o presiune de 2 bari timp de 48 ore, apoi la o presiune de 4 bari timp de 24 ore și în etapa a treia la o presiune de 8 bari timp de 24 ore. După despicarea epruvetelor, s-a măsurat adâncimea de pătrundere a apei, în mm, rezultatele determinărilor fiind prezentate în tabelul 4. Această determinare s-a făcut pe epruvete de beton cu vârsta de 28 și 56 zile.

Prin folosirea adaosurilor minerale ca înlocuitor parțial al cimentului se obține o îmbunătățire a structurii poroase a betonului și o The elasticity secant modulus (between $\sigma_c=0$ and $0.4f_{cm})E_{cm}$ for the C35/45 strength concrete class according to the standards, must be at least 34GPa.

The elasticity modulus for the studied concrete compositions is framed in the range 39.36 to 41.84GPa, being higher than the minimum allowed value for the C35/45 concrete class. The maximum value was obtained for the concrete composition with 10% fly ash addition.

The water ingression depth, as permeability index, was determinated in three stages by putting the water with a pressure of 2 barr for 48 hours, then with a pressure of 4 barr for 24 hours and in the last stage with a pressure of 8 barr for 24 hours. After splitting the specimens, the water ingression depth (in mm) was measured. The determinations results are presented in Table 4. This determination was made on concrete specimens hardened for 28 and 56 days.

By using the mineral additions as cement partial substitute, it was obtained an improvement of the concrete porosity and a densification of the binder matrix because of the chemical and physical effect exerted by the siliceous additions; through the pozzolan reaction calcium hydroxide is consumed which leads to the reduction of the porosity into

densificare a matricii liante datorită efectului chimic și fizic al adaosurilor silicioase; prin reacția puzzolanică este consumat hidroxidul de calciu, ceea ce conduce la micsorarea porozității zonei de interfață matrice liantă-agregat, iar prin efectul de filer, particulele silicioase fine contribuie la densificarea matricii și a betonului. Astfel se explică scăderea adâncimii de pătrundere a apei sub presiune pentru toate compozițiile de beton cu adaosuri, față de betonul etalon, cu ciment mai bună compactitate s-a Portland. Cea înregistrat pentru compoziția de beton cu 10% metacaolin. Se evidențiază o îmbunătățire a valorilor la 56 zile comparativ cu cele la 28 zile. Scăderea frontului de pătrundere a apei în betoanele întărite timp mai îndelungat este explicată prin densificarea acestora, ca urmare a progresării proceselor de hidratare, inclusiv a reacției puzzolanice, cu formare de cantități suplimentare de hidrocompuşi.

Rezistența la îngheț-dezgheț a fost determinată prin metoda distructivă pe 6 epruvete pentru fiecare compoziție proiectată. Trei epruvete au fost supuse la 100 cicluri de îngheț-dezgheț, 4 ore la temperatura de -17 ± 2 ⁰C și 4 ore în apă, la 20 ± 5 ⁰C. Trei epruvete martor, au fost păstrate în apă la 20 ± 2 ⁰C. Cele trei epruvete supuse la gelivitate și cele 3 epruvete martor au fost supuse solicitării la compresiune. Pierderea de rezistență la compresiune a probelor supuse la gelivitate față de probele martor, se calculează cu relația:

$$\eta = \frac{f_{cm(martor)} - f_{cm(i-d)}}{f_{cm(martor)}} \times 100 \quad (\%), [20]$$

în care

 $f_{\text{cm}(\text{martor})}$ - media rezistenței la compresiune a epruvetelor martor, N/mm²;

 $f_{cm(\hat{i}-d)}$ - media rezistenței la compresiune a epruvetelor supuse la îngheț-dezgheț, N/mm².

Valorile pierderii de rezistență pentru compozițiile de beton studiate sunt prezentate în tabelul 5.

Betoanele cu adaosuri minerale au o comportare bună la cicluri succesive de înghețdezgheț. Pierderea de rezistență cea mai mică este evidențiată la proba S-6, cu 10% silice ultrafină și 10% cenuşă de termocentrală urmată de S-5 cu 10% silice ultrafină. Compoziția S-4 (10% cenuşă și 10% metacaolin) a înregistrat cea mai mare pierdere de rezistență la compresiune, depășind-o pe cea a etalonului. Această compointerface zone binder matrix - aggregate, and through the filler effect, the fine siliceous particles contribute to the matrix and concrete densification. Thereby, it is explained the decrease of the water ingression depth under pressure for all the concrete compositions with additions, towards the Portland cement reference concrete. The best compactness was recorded by the concrete composition with 10% metakaolin. It is pointed out an improvement of the values at 56 days compared to the those at 28 days. The decrease of the water frontline at longer terms of concretes hardening is explained by their densification due to the hydration processes progression, including the pozzolan reaction, with formation of the supplementary amounts hydrates.

The freeze-thaw strength was determinated by a destructive method on 6 specimens for each of the studied composition. Three specimens were subjected to 100 freeze-thaw cycles, 4 hours at - 17 ± 2 °C and 4 hours in water at 20±5 °C. Three reference specimens, were kept in water at 20±2 °C. The three specimens subjected to freeze-thaw and the three reference specimens were subjected to the compressive test.

The loss of the compressive strength of the specimens subjected to freeze-thaw test towards to the reference specimens strength, can be calculated with the following relation:

$$\eta = \frac{f_{cm(control)} - f_{cm(\hat{i}-d)}}{f_{cm(control)}} \times 100 \quad (\%), \quad [20]$$

where:

 $f_{cm(ref.)}$ - the average compressive strength of the reference specimens, N/mm²;

 $f_{\text{cm}(\tilde{i}\text{-d})}$ - the average compressive strength of the specimens subjected to freeze-thaw cycles, $N/\text{mm}^2.$

The strength loss values for the studied concrete compositions are presented in Table 5.

The concretes with mineral additions, have a good behaviour at successive freeze-thaw cycles. The lowest strenght loss is pointed out at the S-6 sample, with 10% silica fume and 10% fly ash, followed by the S-5 with 10% silica fume. The S-4 composition (10% fly ash and 10% metakaolin) recorded the highest loss of the compressive strength by freeze-thaw, the value being higher than the reference's one. This composition has also the smallest compressive strengths, at all the hardening terms, their values

Tabelul 5

Pierderea rezistenței la compresiune a probelor supuse la gelivitate The loss of the compressive strength of the specimens subjected to freeze-thaw test

Compoziția Composition Caracteristica Characteristic	S-1	S-2	S-3	S-4	S-5	S-6	S-7
η, %	8.25	6.91	7.85	11.84	5.98	5.08	6.25

ziție are și cele mai mici rezistențe la compresiune, la toate termenele de intărire, fiind sub valoarea etalonului. Se poate concluziona că betoanele cu adaosuri minerale sunt mai compacte și ca atare mai rezistente la cicluri de îngheț-dezgheț.

5. Concluzii

Adaosurile hidraulic active cum sunt cenuşa zburătoare, silicea ultrafină și metacaolinul pot fi utilizate pentru realizarea de betoane cu bune caracteristici fizico-mecanice. Experimentele efectuate pe betoane cu adaosuri de 10% sau 20% ca substituenți ai cimentului au evidențiat un efect în general favorabil al adaosurilor, atât asupra comportării în stare proaspătă cât și întărită a betonului.

Proprietățile în stare proaspătă - densitatea, tasarea, răspândirea și volumul de aer oclus încadrează betoanele în categoria celor cu masă volumică normală.

Rezistențele mecanice la 28 zile, ale betoanelor cu adaosuri indigene de cenuşă de termocentrală și metacaolin - individuale sau în combinație cu silicea ultrafină, sunt apropiate de cele ale betonului etalon, iar la termene mai mari sunt superioare, cu excepția compoziției S-4 (10%FA+10%MK).

Modulul de elasticitate, pentru toate compozițiile studiate este superior valorii minime admise pentru clasa de beton C35/45. Amestecul cu cenuşă zburătoare are valoarea cea mai mare a modului.

În cazul betoanelor cu adaosuri, adâncimea de pătrundere a apei, ca un indiciu al permeabilității, scade față de cea a betonului etalon, adaosurile minerale determinând o densificare a structurii betonului, ca rezultat al efectului chimic și fizic al adaosurilor silicioase.

Betoanele cu 10% adaos prezintă rezistențe la gelivitate mai bune decât betonul etalon, o comportare bună având și amestecurile de beton cu 20% adaosuri, cea mai mică pierdere fiind evidențiată la proba S-6 cu cenuşă zburătoare și silice ultrafină.

Studiile experimentale au demonstrat că folosirea materialelor indigene de tipul cenuşilor zburătoare și metacaolinului, mai ales în forma combinată cu silicea ultrafină, la fabricarea betonului favorizează evoluția pozitivă a rezistențelor mecanice, creșterea gradului de impermeabilitate, implicit a gradului de gelivitate, permițând obținerea de betoane performante din punct de vedere tehnic, economic și ecologic.

REFERENCES

being smaler than the referencel's value. It can be concluded that the concretes with mineral additions are more compact and therefore have beter resistance at freeze-thaw cycles.

5. Conclusions

The hydraulic active additions like fly ash, silica fume and metakaolin can be used for obtaining concretes with good physical-mechanical characteristics. The experiments conducted on the concretes with 10% or 20% additions as substitutes of Portland cement have showed a general favorable effect of the additions, both on the fresh concrete and on hardened concrete behaviour.

The fresh concrete properties - the density, the slump, the flow and the air enttrapped volume, frame concretes in the normal volumic mass category.

The mechanical strengths of the concretes with (indigenous addition) fly ash and metakaolin individually or in combination with silica fume, at 28 days, are closely to the ones of the reference concrete, and at long hardened terms they are higher, except S-4 composition, with 10% FA+ 10% MK.

The elasticity modulus for all studied samples was higher than the minimum allowed value for the C35/45 concrete class. The concrete with fly ash addition had the biggest value of the elasticity modulus.

For the concretes with additions, the water ingression depth, as a permeability index, decreases compared to the reference one, the mineral additions inducing an increase of concrete structure density, as result of chemical and physical effect exerted by the siliceous additions.

The concretes with 10% addition present freeze-thaw strengths better than the reference concrete. A good behaviour was also recorded for the concretes with 20% additions, the lower loss being pointed out for S-6 composition, with fly ash and silica fume.

The experimental studies had demonstrated that using indigenous materials like fly ashes and metakaolin, especially in combination with silica fume, for producing concrete favor the development of the mechanical strenghts, the impermeability level growth, implicitly the freeze-thaw strength, allowing the production of advanced concretes in terms of technology, economy and ecology.

K. Vance, M. Aguayo, T. Oey, G. Sant, and N. Neithalath, Hydration and strength development in ternary Portland cement blends containing limestone and fly ash or metakaolin, Cement and Concrete Composites 2013, **39**, 93.

F. Cassagnabère, P. Diederich, M. Mouret, G. Escadeillas, and M. Lachemi, Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state Cement and Concrete Composites 2013, 37, 95.

- C. Perlot, P. Rougeau, and S. Dehaudt, Slurry of metakaolin combined with limestone addition for self-compcted concrete. Application for precast industry, Cement and Concrete Composites, 2013, 44, 50.
- J. E. Oh, Y. Jun, and Y. Jeong, Characterization of geopolymers from compositionally and physically different Class F fly ashes, Cement and Concrete Composites 2014, 50, 16.
- A. Kumar, T. Oey, S. Kim, D. Thomas, S. Badran, J. Li, F. Fernandes, N. Neithalath, and G. Sant, Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials, Cement and Concrete Composites 2013, 42, 20.
- S. Goñi, M. Frías, R. Vigil de la Villa, and I. Vegas, Decalcification of activated paper sludge – Fly ash-Portland cement blended pastes in pure water, Cement and Concrete Composites 2013, 40, 1.
- 7. A. Neville, The properties of concrete, edited by Technical Publishing House, Bucharest, 2003.
- C. Măgureanu, High resistance and performance concretes, U.T.PRESS, Cluj-Napoca, 2010, p. 274.
- E. Badogiannis, and S. Tsivilis, Exploitation of poor Greek kaolins: Durability of metakaolin concrete, Cement and Concrete Composites 2009, **31**, 128.
- R. Siddique, and J.Klaus, Influence of metakaolin on the properties of mortar and concrete, Applied Clay Science, 2009, 43, 392.
- H. M. Khater, Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution, Ceramics – Silikáty, 2010, 54(4), 325.

- R. Walker, and S. Pavia, Physical properties and reactivity of pozzolans, and their influence on properties of limepozzolan pastes, Materials and Structures, 2011, 44, 1139.
- S. U. Khan, M. F. Nuruddin, T. Ayub, and N. Shafiq, Effects of Different Mineral Admixtures on the Properties of Fresh Concrete, Hindawi Publishing Corporation The Scientific World Journal, Volume 2014, Article ID 986567, 11 pages.
- xxx, ACI Committee 232, "Use of fly ash in concrete," Tech. Rep. ACI 232. 2R-03, 2003.
- C. He, B. Osbaeck, E Macovichy, Pozzolanic reaction of six principal clay minerals: activation reactivity assessments and technological effects, Cement and Concrete Research 1995, **25**(8), 1691.
- A. Tironi, M. A. Trezza, A. N. Scian, and E. F. Irassar, Assessment of pozzolanic activity of different calcined clays, Cement and Concrete Composites 2013, 37, 319.
- I. Robu, I. Petre, and N. Saca, Behaviour of cement with metakaolin addition in mortars and concretes, Romanian Journal of Materials, 2012, 42(2), 118.
- M. Gheorghe, N. Saca, C. Ghecef, R. Pintoi, L. Radu, Self compacted concrete with fly ash addition, Romanian Journal of Materials, 2011, 41(3), 207.
- N. Ghafoori, H. Diawara, Abrasion Resistance of Fine Aggregate Replaced Silica Fume Concrete, ACI Materials Journal / September-October 1999, Title no. 96-M69
- xxx, SR 3518:2009 Tests on concretes. Determination of the freeze-thawing resistance by measuring the variation of the resistance strength and/or the dynamic relative elastic modulus.

glebal Southerence

10th Global Slag Conference & Exhibition

Aachen, Germany, 8 - 9 December 2014

- Slag and slag cement market trends
- Slag product trends
- Beneficiation of slag and slag products
- Slag cement production and use
- Case studies
- New applications for slag and slag products

Contact: http://www.globalslag.com/contact